Stochastic oscillations of general relativistic discs

We analyse the general relativistic oscillations of thin accretion discs around compact astrophysical objects interacting with the surrounding medium through non-gravitational forces. The interaction with the external medium (a thermal bath) is modelled via a friction force and a random force, respe...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 421; no. 4; pp. 3102 - 3110
Main Authors Harko, Tiberiu, Mocanu, Gabriela Raluca
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2012
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We analyse the general relativistic oscillations of thin accretion discs around compact astrophysical objects interacting with the surrounding medium through non-gravitational forces. The interaction with the external medium (a thermal bath) is modelled via a friction force and a random force, respectively. The general equations describing the stochastically perturbed discs are derived by considering the perturbations of trajectories of the test particles in equatorial orbits, assumed to move along the geodesic lines. By taking into account the presence of a viscous dissipation and of a stochastic force, we show that the dynamics of the stochastically perturbed discs can be formulated in terms of a general relativistic Langevin equation. The stochastic energy transport equation is also obtained. The vertical oscillations of the discs in the Schwarzschild and Kerr geometries are considered in detail, and they are analysed by numerically integrating the corresponding Langevin equations. The vertical displacements, velocities and luminosities of the stochastically perturbed discs are explicitly obtained for both the Schwarzschild and the Kerr cases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2012.20530.x