Genome-wide analysis of the calcium-dependent protein kinase gene family in Gossypium raimondii

Plant calcium-dependent protein kinases (CDPKs) play important roles in diverse physiological processes by regulating the downstream components of calcium signaling. To date, only a few species of the plant CDPK gene family have been functionally identified. In addition, there has been no systematic...

Full description

Saved in:
Bibliographic Details
Published inJournal of Integrative Agriculture Vol. 14; no. 1; pp. 29 - 41
Main Authors LI, Li-bei, YU, Ding-wei, ZHAO, Feng-li, PANG, Chao-you, SONG, Mei-zhen, WEI, Heng-ling, FAN, Shu-li, YU, Shu-xun
Format Journal Article
LanguageEnglish
Published Science Press 2015
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant calcium-dependent protein kinases (CDPKs) play important roles in diverse physiological processes by regulating the downstream components of calcium signaling. To date, only a few species of the plant CDPK gene family have been functionally identified. In addition, there has been no systematic analysis of the CDPK family in cotton. Here, 41 putative cotton CDPK (GrCDPK) genes were identified via bioinformatics analysis of the entire genome of Gossypium raimondii and were classified into four groups based on evolutionary relatedness. Gene structure analysis indicated that most of these GrCDPK genes share a similar intron-exon structure (7 or 8 exons), strongly supporting their close evolutionary relationships. Chromosomal distributions and phylogenetics analysis showed that 13 pairs of GrCDPK genes arose via segmental duplication events. Furthermore, using microarray data of upland cotton (G. hirsutum L.), comparative profiles analysis of these GhCDPKs indicated that some of the encoding genes might be involved in the responses to multiple abiotic stresses and play important regulatory roles during cotton fiber development. This study is the first genome-wide analysis of the CDPK family in cotton, and it will provide valuable information for the further functional characterization of cotton CDPK genes.
Bibliography:10-1039/S
GrCDPK, cotton, stress, gene family, expression
Plant calcium-dependent protein kinases (CDPKs) play important roles in diverse physiological processes by regulating the downstream components of calcium signaling. To date, only a few species of the plant CDPK gene family have been functionally identified. In addition, there has been no systematic analysis of the CDPK family in cotton. Here, 41 putative cotton CDPK (GrCDPK) genes were identified via bioinformatics analysis of the entire genome of Gossypium raimondii and were classified into four groups based on evolutionary relatedness. Gene structure analysis indicated that most of these GrCDPK genes share a similar intron-exon structure (7 or 8 exons), strongly supporting their close evolutionary relationships. Chromosomal distributions and phylogenetics analysis showed that 13 pairs of GrCDPK genes arose via segmental duplication events. Furthermore, using microarray data of upland cotton (G. hirsutum L.), comparative profiles analysis of these GhCDPKs indicated that some of the encoding genes might be involved in the responses to multiple abiotic stresses and play important regulatory roles during cotton fiber development. This study is the first genome-wide analysis of the CDPK family in cotton, and it will provide valuable information for the further functional characterization of cotton CDPK genes.
http://www.chinaagrisci.com/Jwk_zgnykxen/fileup/PDF/2014,V14(01)-29.pdf
http://dx.doi.org/10.1016/S2095-3119(14)60780-2
ISSN:2095-3119
2352-3425
DOI:10.1016/S2095-3119(14)60780-2