RoDiCE: robust differential protein co-expression analysis for cancer complexome

Abstract Motivation The full spectrum of abnormalities in cancer-associated protein complexes remains largely unknown. Comparing the co-expression structure of each protein complex between tumor and healthy cells may provide insights regarding cancer-specific protein dysfunction. However, the techni...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 38; no. 5; pp. 1269 - 1276
Main Authors Matsui, Yusuke, Abe, Yuichi, Uno, Kohei, Miyano, Satoru
Format Journal Article
LanguageEnglish
Published England Oxford University Press 07.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Motivation The full spectrum of abnormalities in cancer-associated protein complexes remains largely unknown. Comparing the co-expression structure of each protein complex between tumor and healthy cells may provide insights regarding cancer-specific protein dysfunction. However, the technical limitations of mass spectrometry-based proteomics, including contamination with biological protein variants, causes noise that leads to non-negligible over- (or under-) estimating co-expression. Results We propose a robust algorithm for identifying protein complex aberrations in cancer based on differential protein co-expression testing. Our method based on a copula is sufficient for improving identification accuracy with noisy data compared to conventional linear correlation-based approaches. As an application, we use large-scale proteomic data from renal cancer to show that important protein complexes, regulatory signaling pathways and drug targets can be identified. The proposed approach surpasses traditional linear correlations to provide insights into higher-order differential co-expression structures. Availability and implementation https://github.com/ymatts/RoDiCE. Supplementary information Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
DOI:10.1093/bioinformatics/btab612