A practical guide to multi-objective reinforcement learning and planning

Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objective...

Full description

Saved in:
Bibliographic Details
Published inAutonomous agents and multi-agent systems Vol. 36; no. 1
Main Authors Hayes, Conor F., Rădulescu, Roxana, Bargiacchi, Eugenio, Källström, Johan, Macfarlane, Matthew, Reymond, Mathieu, Verstraeten, Timothy, Zintgraf, Luisa M., Dazeley, Richard, Heintz, Fredrik, Howley, Enda, Irissappane, Athirai A., Mannion, Patrick, Nowé, Ann, Ramos, Gabriel, Restelli, Marcello, Vamplew, Peter, Roijers, Diederik M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1387-2532
1573-7454
1573-7454
DOI:10.1007/s10458-022-09552-y