Theory of one-tape linear-time Turing machines
A theory of one-tape two-way one-head off-line linear-time Turing machines is essentially different from its polynomial-time counterpart since these machines are closely related to finite state automata. This paper discusses structural-complexity issues of one-tape Turing machines of various types (...
Saved in:
Published in | Theoretical computer science Vol. 411; no. 1; pp. 22 - 43 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier B.V
2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A theory of one-tape two-way one-head off-line linear-time Turing machines is essentially different from its polynomial-time counterpart since these machines are closely related to finite state automata. This paper discusses structural-complexity issues of one-tape Turing machines of various types (deterministic, nondeterministic, reversible, alternating, probabilistic, counting, and quantum Turing machines) that halt in linear time, where the running time of a machine is defined as the length of any longest computation path. We explore structural properties of one-tape linear-time Turing machines and clarify how the machines’ resources affect their computational patterns and power. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2009.08.031 |