Cross-Talk between Fas/Fas Ligand System and Nitric Oxide in the Pathway Subserving Granulosa Cell Apoptosis: A Possible Regulatory Mechanism for Ovarian Follicle Atresia

Recent studies have shown the involvement of Fas/Fas ligand (FasL) system and nitric oxide (NO) in ovarian follicle atresia. Here we asked whether Fas/Fas ligand system interacts with NO using rat granulosa cell culture. Soluble recombinant Fas ligand (rFasL), at 100 ng/ml, significantly decreased c...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 146; no. 2; pp. 808 - 815
Main Authors Chen, Qiumei, Yano, Tetsu, Matsumi, Hirotaka, Osuga, Yutaka, Yano, Naomi, Xu, Jiping, Wada, Osamu, Koga, Kaori, Fujiwara, Toshihiro, Kugu, Koji, Taketani, Yuji
Format Journal Article
LanguageEnglish
Published Bethesda, MD Endocrine Society 01.02.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies have shown the involvement of Fas/Fas ligand (FasL) system and nitric oxide (NO) in ovarian follicle atresia. Here we asked whether Fas/Fas ligand system interacts with NO using rat granulosa cell culture. Soluble recombinant Fas ligand (rFasL), at 100 ng/ml, significantly decreased cell viability, as measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, in the presence of 200 U/ml interferon-γ, whereas the concurrent addition of a caspase inhibitor, Z-VAD-FMK, at 20 μm, significantly inhibited rFasL-induced cytotoxicity. Hoechst 33342 staining and flow cytometric analysis confirmed the induction of apoptosis in granulosa cells by 100 ng/ml rFasL in the presence of interferon-γ, which was blocked by the concomitant addition of an NO donor, S-nitroso-N-acetylpenicillamine. Western blot analysis demonstrated that rFasL significantly up-regulated caspase-3, -8, and -9 activities in granulosa cells, which were attenuated by concurrent treatment with S-nitroso-N-acetylpenicillamine. Real-time quantitative RT-PCR revealed a significant decrease in inducible NO synthase mRNA levels in rFasL-induced apoptotic granulosa cells. In conclusion, we demonstrated the involvement of Fas/FasL system in inducing apoptosis through activation of a caspase-mediated cascade in rat granulosa cells, which is coupled with a decrease in inducible NO synthase expression. We further showed that NO inhibited Fas/FasL system-induced apoptosis by suppressing activation of the caspases, pointing to a cross-talk between Fas/FasL system-induced apoptosis pathway and NO-mediated antiapoptotic pathway in ovarian follicle atresia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2004-0579