Resilience-Based Component Importance Measures for Critical Infrastructure Network Systems
In this paper, we propose two metrics, i.e., the optimal repair time and the resilience reduction worth, to measure the criticality of the components of a network system from the perspective of their contribution to system resilience. Specifically, the two metrics quantify: 1) the priority with whic...
Saved in:
Published in | IEEE transactions on reliability Vol. 65; no. 2; pp. 502 - 512 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we propose two metrics, i.e., the optimal repair time and the resilience reduction worth, to measure the criticality of the components of a network system from the perspective of their contribution to system resilience. Specifically, the two metrics quantify: 1) the priority with which a failed component should be repaired and re-installed into the network and 2) the potential loss in the optimal system resilience due to a time delay in the recovery of a failed component, respectively. Given the stochastic nature of disruptive events on infrastructure networks, a Monte Carlo-based method is proposed to generate probability distributions of the two metrics for all of the components of the network; then, a stochastic ranking approach based on the Copeland's pairwise aggregation is used to rank components importance. Numerical results are obtained for the IEEE 30-bus test network and a comparison is made with three classical centrality measures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9529 1558-1721 |
DOI: | 10.1109/TR.2016.2521761 |