Consistent estimation with many moment inequalities

In this paper, we consider estimation of the identified set when the number of moment inequalities is large relative to sample size, possibly infinite. Many applications in the recent literature on partially identified problems have this feature, including dynamic games, set-identified IV models, an...

Full description

Saved in:
Bibliographic Details
Published inJournal of econometrics Vol. 182; no. 2; pp. 329 - 350
Main Author Menzel, Konrad
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2014
Elsevier Sequoia S.A
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we consider estimation of the identified set when the number of moment inequalities is large relative to sample size, possibly infinite. Many applications in the recent literature on partially identified problems have this feature, including dynamic games, set-identified IV models, and parameters defined by a continuum of moment inequalities, in particular conditional moment inequalities. We provide a generic consistency result for criterion-based estimators using an increasing number of unconditional moment inequalities. We then develop more specific results for set estimation subject to conditional moment inequalities: we first derive the fastest possible rate for estimating the sharp identification region under smoothness conditions on the conditional moment functions. We also give rate conditions for inference under local alternatives.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2014.05.016