Selective Probiotic Treatment Positively Modulates the Microbiota–Gut–Brain Axis in the BTBR Mouse Model of Autism

Recent studies have shown promise for the use of probiotics in modulating behaviour through the microbiota–gut–brain axis. In the present study, we assessed the impact of two probiotic strains in mitigating autism-related symptomology in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorder...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 12; no. 6; p. 781
Main Authors Pochakom, Angela, Mu, Chunlong, Rho, Jong M., Tompkins, Thomas A., Mayengbam, Shyamchand, Shearer, Jane
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 14.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies have shown promise for the use of probiotics in modulating behaviour through the microbiota–gut–brain axis. In the present study, we assessed the impact of two probiotic strains in mitigating autism-related symptomology in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorder (ASD). Male juvenile BTBR mice were randomized into: (1) control, (2) Lr probiotic (1 × 109 CFU/mL Lacticaseibacillus rhamnosus HA-114), and (3) Ls probiotic groups (1 × 109 CFU/mL Ligilactobacillus salivarius HA-118) (n = 18–21/group), receiving treatments in drinking water for 4 weeks. Gut microbiota profiling by 16S rRNA showed Lr, but not Ls supplementation, to increase microbial richness and phylogenetic diversity, with a rise in potential anti-inflammatory and butyrate-producing taxa. Assessing serum and brain metabolites, Lr and Ls supplementation produced distinct metabolic profiles, with Lr treatment elevating concentrations of potentially beneficial neuroactive compounds, such as 5-aminovaleric acid and choline. As mitochondrial dysfunction is often observed in ASD, we assessed mitochondrial oxygen consumption rates in the prefrontal cortex and hippocampus. No differences were observed for either treatment. Both Lr and Ls treatment reduced behavioural deficits in social novelty preference. However, no changes in hyperactivity, repetitive behaviour, and sociability were observed. Results show Lr to impart positive changes along the microbiota–gut–brain axis, exhibiting beneficial effects on selected behaviour, gut microbial diversity, and metabolism in BTBR mice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci12060781