Determination of three-dimensional strain state in crystals using self-interfered split HOLZ lines
An experimental method to measure the strain through the thickness of a crystal is demonstrated. This enables the full three-dimensional stress–strain state of a crystal at the nanoscale to be determined taking the current practice from two-dimensional strain state determination. Knowing the 3D stra...
Saved in:
Published in | Ultramicroscopy Vol. 156; pp. 37 - 40 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An experimental method to measure the strain through the thickness of a crystal is demonstrated. This enables the full three-dimensional stress–strain state of a crystal at the nanoscale to be determined taking the current practice from two-dimensional strain state determination. Knowing the 3D strain state is desired by crystal growers in order to improve their crystal's quality. This method involves combining electron diffraction with electron interferometry in a transmission electron microscope. The electron diffraction uses a split higher order Laue zone (HOLZ) line and the electron interferometry uses an electron biprism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-3991 1879-2723 |
DOI: | 10.1016/j.ultramic.2015.04.013 |