Improving emulsion stability based on ovalbumin-carboxymethyl cellulose complexes with thermal treatment near ovalbumin isoelectric point

Ovalbumin (OVA) is an important protein emulsifier. However, it is unstable near the isoelectric point pH, which limits its applications in the food industry. Polysaccharides may be explored to tackle this challenge by improving its pH-dependent instability. In this work, carboxymethyl cellulose (CM...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 3456
Main Authors Li, Zhenshun, Kuang, Hairui, Yang, Jinchu, Hu, Jie, Ding, Baomiao, Sun, Weiqing, Luo, Yangchao
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 26.02.2020
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ovalbumin (OVA) is an important protein emulsifier. However, it is unstable near the isoelectric point pH, which limits its applications in the food industry. Polysaccharides may be explored to tackle this challenge by improving its pH-dependent instability. In this work, carboxymethyl cellulose (CMC) was used as a model polysaccharide to mix with OVA near its isoelectric point (pH 4.7) with subsequent mild heating at 60 °C for 30 min. The molecular interactions between OVA and CMC were comprehensively studied via a series of characterizations, including turbidity, zeta potential, intrinsic fluorescence, surface hydrophobicity, circular dichroism (CD) spectra and Fourier transform infrared spectroscopy (FTIR). The droplet sizes of the emulsions prepared by OVA-CMC were measured to analyze emulsifying property and stability. The results indicated that free OVA was easily aggregated due to loss of surface charges, while complexing with CMC significantly inhibited OVA aggregation before and after heating owing to the strong electrostatic repulsion. In addition, OVA exposed more hydrophobic clusters after heating, which resulted in the growth of surface hydrophobicity. Altogether, the heated OVA-CMC complexes presented the best emulsifying property and stability. Our study demonstrated that complexing OVA with CMC not only greatly improved its physicochemical properties but also significantly enhanced its functionality as a food-grade emulsifying agent, expanding its applications in the food industry, as development of emulsion-based acidic food products.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-60455-y