DEM SIMULATION OF LIQUEFACTION FOR GRANULAR MEDIA UNDER UNDRAINED AXISYMMETRIC COMPRESSION AND PLANE STRAIN CONDITIONS

Based on three dimensional (3D) Discrete Element Method (DEM), the paper presents simulation results of undrained tests on loose assemblies of polydisperse spheres under axisymmetric compression and plane strain conditions using a periodic cell. In the present work, undrained tests were modelled by...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica solida Sinica Vol. 25; no. 6; pp. 562 - 570
Main Authors Gong, Guobin, Lin, Peng, Qin, Yawei, Wei, Jun
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.12.2012
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on three dimensional (3D) Discrete Element Method (DEM), the paper presents simulation results of undrained tests on loose assemblies of polydisperse spheres under axisymmetric compression and plane strain conditions using a periodic cell. In the present work, undrained tests were modelled by deforming the samples under constant volume conditions. The undrained (effective) stress paths are shown to be qualitatively similar to experimental results in literature. A microscopic parameter in terms of redundancy factor (RF) is used to identify the onset of liquefaction (or temporary liquefaction), with the condition of RF equal to unity defining the transition from ‘solid-like’ to ‘liquid-like’ behaviour. It is found that the undrained behaviour is governed by the evolution of redundancy factor under both undrained axisymmetric compression and plane strain conditions, and a reversal of deviatoric stress in stress path for medium loose systems occurs due to the fact that the system becomes a structural mechanism (RF < 1) transiently at the microscopic level during the evolution.
Bibliography:discrete element, deviatoric stress, periodic cell, liquefaction, redundancy factor
42-1121/O3
Based on three dimensional (3D) Discrete Element Method (DEM), the paper presents simulation results of undrained tests on loose assemblies of polydisperse spheres under axisymmet- ric compression and plane strain conditions using a periodic cell. In the present work, undrained tests were modelled by deforming the samples under constant volume conditions. The undrained (effective) stress paths are shown to be qualitatively similar to experimental results in literature. A microscopic parameter in terms of redundancy factor (RF) is used to identify the onset of lique- faction (or temporary liquefaction), with the condition of RF equal to unity defining the transition from 'solid-like' to 'liquid-like' behaviour. It is found that the undrained behaviour is governed by the evolution of redundancy factor under both undrained axisymmetric compression and plane strain conditions, and a reversal of deviatoric stress in stress path for medium loose systems oc- curs due to the fact that the system becomes a structural mechanism (RF 〈 1) transiently at the microscopic level during the evolution.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0894-9166
1860-2134
DOI:10.1016/S0894-9166(12)60051-2