dv-trio: a family-based variant calling pipeline using DeepVariant

Abstract Motivation In 2018, Google published an innovative variant caller, DeepVariant, which converts pileups of sequence reads into images and uses a deep neural network to identify single-nucleotide variants and small insertion/deletions from next-generation sequencing data. This approach outper...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 36; no. 11; pp. 3549 - 3551
Main Authors Ip, Eddie K K, Hadinata, Clinton, Ho, Joshua W K, Giannoulatou, Eleni
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Motivation In 2018, Google published an innovative variant caller, DeepVariant, which converts pileups of sequence reads into images and uses a deep neural network to identify single-nucleotide variants and small insertion/deletions from next-generation sequencing data. This approach outperforms existing state-of-the-art tools. However, DeepVariant was designed to call variants within a single sample. In disease sequencing studies, the ability to examine a family trio (father-mother-affected child) provides greater power for disease mutation discovery. Results To further improve DeepVariant’s variant calling accuracy in family-based sequencing studies, we have developed a family-based variant calling pipeline, dv-trio, which incorporates the trio information from the Mendelian genetic model into variant calling based on DeepVariant. Availability and implementation dv-trio is available via an open source BSD3 license at GitHub (https://github.com/VCCRI/dv-trio/). Contact e.giannoulatou@victorchang.edu.au Supplementary information Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btaa116