Photothermal Hyperthermia Study of Ag/Ni and Ag/Fe Plasmonic Particles Synthesized Using Dual-Pulsed Laser
Magneto-plasmonic Ag/Ni and Ag/Fe nanoparticles (NPs) were synthesized in this work using the environmentally safe and contaminant-free dual-pulsed Q-switched Nd:YAG 1064 nm laser ablation method. The optical and magnetic characteristics of synthesized nanomaterials were investigated using a vibrati...
Saved in:
Published in | Magnetochemistry Vol. 9; no. 3; p. 59 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Magneto-plasmonic Ag/Ni and Ag/Fe nanoparticles (NPs) were synthesized in this work using the environmentally safe and contaminant-free dual-pulsed Q-switched Nd:YAG 1064 nm laser ablation method. The optical and magnetic characteristics of synthesized nanomaterials were investigated using a vibrating sample magnetometer and an ultraviolet-visible absorption spectrometer. According to transmission electron microscopy (TEM), the shape of Ag/Ni and Ag/Fe NPs seems to be spherical, with mean diameters of 7.3 nm and 11.5 nm, respectively. X-ray diffraction (XRD) was used in order to investigate and describe the phase structures of the synthesized nanomaterials. The synthesized NPs reached maximum temperatures such as 48.9, 60, 63.4, 70, 75, and 79 °C for Ag/Ni nanofluid and 52, 56, 60, 68, 71, and 72 °C for Ag/Fe nanofluid when these nanofluids were subjected to an NIR 808 nm laser with operating powers of 1.24, 1.76, 2.36, 2.91, 3.5, and 4 W, respectively. Because of the plasmonic hyperthermia properties of nanoparticles, nanofluids display higher temperature profiles than pure water. According to these findings, plasmonic nanoparticles based on silver might be used to treat hyperthermia. |
---|---|
ISSN: | 2312-7481 2312-7481 |
DOI: | 10.3390/magnetochemistry9030059 |