Ubiquitination of NOTCH2 by DTX3 suppresses the proliferation and migration of human esophageal carcinoma

The NOTCH2 gene plays a role in the development of many tumors. Deltex E3 ubiquitin ligase 3 (DTX3) was identified as a novel E3 ligase for NOTCH2 and as a potential therapeutic target for esophageal cancer. However, whether DTX3 could regulate NOTCH2 to suppress the progression of esophageal carcin...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 111; no. 2; pp. 489 - 501
Main Authors Ding, Xin‐Yu, Hu, Hai‐Yang, Huang, Ke‐Nan, Wei, Rong‐Qiang, Min, Jie, Qi, Chen, Tang, Hua, Qin, Xiong
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The NOTCH2 gene plays a role in the development of many tumors. Deltex E3 ubiquitin ligase 3 (DTX3) was identified as a novel E3 ligase for NOTCH2 and as a potential therapeutic target for esophageal cancer. However, whether DTX3 could regulate NOTCH2 to suppress the progression of esophageal carcinoma remains unknown. In our study, NOTCH2 had higher expression in human esophageal carcinoma cell lines compared to normal human esophageal epithelial cell line, and ablation of NOTCH2 suppressed the proliferation and migration of esophageal carcinoma cells. A novel E3 ligase for NOTCH2 was identified by yeast two‐hybrid (Y2H) screening, and DTX3 promoted the ubiquitination and degradation of NOTCH2. Further study showed that DTX3 overexpression suppressed the proliferation and tumorigenicity of human oesophageal carcinoma cells. The analysis of tissue samples from patients revealed that the expression of NOTCH2 was high while the expression of DTX3 was low in esophageal cancer. Furthermore, the expression of DTX3 and NOTCH2 showed a significant negative correlation in human oesophageal cancer samples. Our study suggested that the DTX3‐NOTCH2 axis plays an important role in the progression of esophageal cancer, and DTX3 acts as an anti–oncogene in esophageal carcinoma, potentially offering a therapeutic target for esophageal cancer. The DTX3‐NOTCH2 axis plays an important role in the progression of esophageal cancer, and DTX3 acts as an anti–oncogene in esophageal carcinoma, potentially offering a therapeutic target for esophageal cancer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Xin‐Yu Ding, Hai‐Yang Hu and Ke‐Nan Huang contributed equally to this work.
ISSN:1347-9032
1349-7006
DOI:10.1111/cas.14288