Trihalomethane (THM) formation from synergic disinfection of biologically treated municipal wastewater: Effect of ultraviolet (UV) irradiation and titanium dioxide photocatalysis on dissolve organic matter fractions
•THM formation affected by UV/chlorination and UV/TiO2/chlorination was reported.•UV irradiation degraded high MW THM precursors into small MW fractions.•TiO2 photocatalysis reduced more aromatic functional groups.•UV/TiO2 photocatalysis degraded more THM precursors than UV irradiation. The trihalom...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 303; pp. 252 - 260 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | •THM formation affected by UV/chlorination and UV/TiO2/chlorination was reported.•UV irradiation degraded high MW THM precursors into small MW fractions.•TiO2 photocatalysis reduced more aromatic functional groups.•UV/TiO2 photocatalysis degraded more THM precursors than UV irradiation.
The trihalomethane (THM) formation of two synergic disinfection methods, UV/chlorination and TiO2 photocatalysis/chlorination, was evaluated to assess the health and ecological risks of biologically treated municipal wastewater. The effect of molecular characteristics of dissolved organic matter (DOM) from membrane bioreactor (MBR) and A2/O process treated municipal wastewaters was investigated. Results showed that THM formation was elevated in both UV/chlorination and TiO2/chlorination synergic disinfection processes compared to chlorination alone. The UV/chlorination process formed the most THMs. Both UV irradiation and UV/TiO2 photocatalysis were found to (i) degrade high molecular weight (MW) THM precursors to small fractions, and (ii) increase the amount of humic acid-like and fulvic acid-like components. Compared with UV irradiation, UV/TiO2 photocatalysis preferably degraded aromatic protein I, aromatic protein II and soluble microbial byproduct-like. Content of CO band and CO band in DOM after UV/TiO2 photocatalysis was lower than that after UV irradiation. In addition, specific THM formation potential of the precursors in the MBR-treated municipal water was higher than that in the A2/O-treated municipal water. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1385-8947 1873-3212 |
DOI: | 10.1016/j.cej.2016.05.141 |