Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene
Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable ba...
Saved in:
Published in | Nature nanotechnology Vol. 15; no. 7; pp. 585 - 591 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors.
The accidental band-crossing origin of Weyl nodes paired with the absence of sizeable band gaps hampers the exploitation of low-energy relativistic quasiparticles in Weyl semimetals. In a gate-tunable high-quality tellurene film, quantum Hall measurements unveil a topologically non-trivial π Berry phase caused by unconventional Weyl nodes in these tellurium two-dimensional sheets. |
---|---|
AbstractList | Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors. Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors.Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors. Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors.The accidental band-crossing origin of Weyl nodes paired with the absence of sizeable band gaps hampers the exploitation of low-energy relativistic quasiparticles in Weyl semimetals. In a gate-tunable high-quality tellurene film, quantum Hall measurements unveil a topologically non-trivial π Berry phase caused by unconventional Weyl nodes in these tellurium two-dimensional sheets. Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors. The accidental band-crossing origin of Weyl nodes paired with the absence of sizeable band gaps hampers the exploitation of low-energy relativistic quasiparticles in Weyl semimetals. In a gate-tunable high-quality tellurene film, quantum Hall measurements unveil a topologically non-trivial π Berry phase caused by unconventional Weyl nodes in these tellurium two-dimensional sheets. |
Author | Qiu, Gang Si, Mengwei Zhang, Zhuocheng Wu, Wenzhuo Niu, Chang Wang, Yixiu Ye, Peide D. |
Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0003-2248-3253 surname: Qiu fullname: Qiu, Gang organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University – sequence: 2 givenname: Chang surname: Niu fullname: Niu, Chang organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University – sequence: 3 givenname: Yixiu surname: Wang fullname: Wang, Yixiu organization: School of Industrial Engineering, Purdue University – sequence: 4 givenname: Mengwei orcidid: 0000-0003-0397-7741 surname: Si fullname: Si, Mengwei organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University – sequence: 5 givenname: Zhuocheng surname: Zhang fullname: Zhang, Zhuocheng organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University – sequence: 6 givenname: Wenzhuo surname: Wu fullname: Wu, Wenzhuo organization: School of Industrial Engineering, Purdue University – sequence: 7 givenname: Peide D. surname: Ye fullname: Ye, Peide D. email: yep@purdue.edu organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32601448$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1L5TAUhsPgMH7-ADcScOOmzslXky5F9CoIMjDDLEOankqlTa9Jurj_3sj1AwRd5QSe5_By3n2yE-aAhBwzOGcgzO8kmapVBRwq0ExV8gfZY1qaSohG7bzPRu-S_ZQeARRvuPxFdgWvgUlp9sjqz-JCXiZ648aRYt-jz3Tu6X_cjLTHOA1zSHQINFR5s0aacBr8HLrF5yE80IzjuEQMeEh-9m5MePT6HpB_11d_L2-qu_vV7eXFXeVlXecKfcdcZxrRYqtRSeVdzeum9r6RKMtHCOiF11wj-E4ZaFuDnHVt7zxyCeKAnG33ruP8tGDKdhqSLylcwHlJlkvWgJEaVEFPP6GP8xJDSVcorUBq0YjvKc5qAYbpQp28Uks7YWfXcZhc3Ni3QxZAbwEf55Qi9tYP2eVyvRzdMFoG9qUyu63MlsrsS2VWFpN9Mt-Wf-fwrZMKGx4wfoT-WnoG7UCmhg |
CitedBy_id | crossref_primary_10_1038_s41578_021_00380_2 crossref_primary_10_1103_PhysRevB_111_075145 crossref_primary_10_1039_D4CS00999A crossref_primary_10_1039_D1NH00253H crossref_primary_10_1007_s11661_023_07189_4 crossref_primary_10_1021_acsanm_4c00510 crossref_primary_10_1088_1674_1056_ac0a5e crossref_primary_10_1002_smll_202207641 crossref_primary_10_1088_0256_307X_40_11_117102 crossref_primary_10_1103_PhysRevB_108_245409 crossref_primary_10_1126_sciadv_adn0560 crossref_primary_10_1038_s41467_020_17766_5 crossref_primary_10_7566_JPSJ_90_044711 crossref_primary_10_1002_smll_202311317 crossref_primary_10_1016_j_xcrp_2024_102356 crossref_primary_10_1039_D4NR04176C crossref_primary_10_1103_PhysRevApplied_17_054044 crossref_primary_10_1002_admi_202002050 crossref_primary_10_1103_PhysRevB_109_245126 crossref_primary_10_1021_acsami_2c20400 crossref_primary_10_1016_j_isci_2021_103594 crossref_primary_10_1021_acsnano_4c02352 crossref_primary_10_1002_asia_202301152 crossref_primary_10_1002_adfm_202104192 crossref_primary_10_1016_j_nanoen_2023_108552 crossref_primary_10_1103_PhysRevB_110_014311 crossref_primary_10_1021_acs_nanolett_1c01705 crossref_primary_10_1038_s41467_022_35396_x crossref_primary_10_1038_s41467_022_33190_3 crossref_primary_10_1088_2515_7655_acc7c8 crossref_primary_10_1126_sciadv_adp8208 crossref_primary_10_1038_s41586_024_07484_z crossref_primary_10_1088_1361_648X_acc5ca crossref_primary_10_1021_acs_nanolett_4c05279 crossref_primary_10_1002_aelm_202200653 crossref_primary_10_1038_s41467_024_46626_9 crossref_primary_10_1038_s41565_024_01732_z crossref_primary_10_1038_s41699_022_00293_w crossref_primary_10_1038_s41467_024_52062_6 crossref_primary_10_3390_cryst9100486 crossref_primary_10_1002_adfm_202300141 crossref_primary_10_1016_j_physe_2021_114673 crossref_primary_10_1021_acs_nanolett_3c02703 crossref_primary_10_1039_D1NA00073J crossref_primary_10_1063_5_0025955 crossref_primary_10_1002_aelm_202400648 crossref_primary_10_1016_j_apsusc_2021_152398 crossref_primary_10_1103_PhysRevLett_125_216402 crossref_primary_10_1038_s41467_024_49706_y crossref_primary_10_1016_j_mtcomm_2022_105075 crossref_primary_10_1002_adma_202309023 crossref_primary_10_1002_adfm_202203003 crossref_primary_10_1038_s41467_023_38090_8 crossref_primary_10_1103_PhysRevB_108_195121 crossref_primary_10_1039_D2NR03226K crossref_primary_10_1039_D4NR04930F crossref_primary_10_1016_j_isci_2023_106177 crossref_primary_10_2139_ssrn_3917174 crossref_primary_10_1109_TED_2022_3198926 crossref_primary_10_1039_C9CS00821G crossref_primary_10_1021_acs_nanolett_0c03897 crossref_primary_10_1002_adma_202204697 crossref_primary_10_1088_2053_1583_ac787f crossref_primary_10_1021_acsnano_3c03893 crossref_primary_10_1007_s11432_022_3695_1 crossref_primary_10_1038_s41563_022_01211_7 crossref_primary_10_1103_PhysRevB_103_235421 crossref_primary_10_1109_TMAT_2024_3394400 crossref_primary_10_1002_adma_202306962 crossref_primary_10_1063_5_0245526 crossref_primary_10_1007_s12274_022_4330_6 crossref_primary_10_1103_PhysRevLett_133_236201 crossref_primary_10_1039_D4QM01089B crossref_primary_10_1021_acs_nanolett_3c05085 crossref_primary_10_1016_j_ssc_2025_115922 crossref_primary_10_1088_1361_648X_ad2805 crossref_primary_10_1039_D3MA00579H crossref_primary_10_1002_admt_202101623 crossref_primary_10_1038_s42005_023_01460_1 crossref_primary_10_1021_acs_nanolett_4c02224 crossref_primary_10_1002_smll_202005801 crossref_primary_10_1021_acsnano_4c02662 crossref_primary_10_1039_D2CY00107A crossref_primary_10_1126_sciadv_abn3837 crossref_primary_10_1103_PhysRevB_105_035126 crossref_primary_10_1021_acs_nanolett_3c01797 crossref_primary_10_1002_adma_202408969 crossref_primary_10_1038_s41565_022_01248_4 crossref_primary_10_1039_D4MA00572D crossref_primary_10_1021_acs_nanolett_3c00780 crossref_primary_10_1016_j_nanoen_2021_106049 crossref_primary_10_1002_adma_202306330 |
Cites_doi | 10.1038/s41563-018-0169-3 10.1103/PhysRevB.101.205414 10.1103/PhysRevLett.95.146801 10.1021/jacs.7b09964 10.1038/nmat1849 10.1021/acs.nanolett.7b01717 10.1109/LED.2014.2323951 10.1103/RevModPhys.90.015001 10.1103/PhysRevLett.45.494 10.1038/nature04235 10.1146/annurev-conmatphys-031016-025225 10.1021/acs.nanolett.9b01827 10.1038/nphys1869 10.1103/PhysRevLett.116.086601 10.1103/PhysRevLett.110.176401 10.1016/0038-1098(71)90630-2 10.1038/ncomms8809 10.7566/JPSJ.82.102001 10.1038/nnano.2016.42 10.1038/nature04233 10.1039/C8CS00598B 10.1021/acs.nanolett.7b03954 10.1143/JPSJ.35.525 10.1038/nnano.2015.91 10.1103/PhysRevLett.118.247701 10.1038/s41586-019-1037-2 10.1038/s41586-019-1031-8 10.1021/acs.nanolett.8b02368 10.1103/PhysRevB.95.125204 10.1103/PhysRevB.86.045444 10.1103/PhysRevLett.121.247701 10.1103/PhysRevLett.118.067702 10.1103/PhysRevB.82.241306 10.1016/0038-1098(74)91220-4 10.1103/PhysRevB.97.205206 10.1103/PhysRevB.97.035158 10.1021/acs.nanolett.8b04865 10.1016/0038-1098(75)90002-2 10.1038/s41928-018-0058-4 10.1038/nnano.2016.242 10.1063/1.3263719 10.1103/PhysRev.145.434 10.1109/DRC.2018.8442253 10.1016/j.physe.2011.09.011 10.1103/PhysRevLett.114.206401 10.1021/acs.nanolett.7b05192 10.1126/science.8134836 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 |
DOI | 10.1038/s41565-020-0715-4 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 591 |
ExternalDocumentID | 32601448 10_1038_s41565_020_0715_4 |
Genre | Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-c466t-ecd1ad893beb7e545ca62696cc94e4ca6330f3c727e0cd580bb8e21dbface2403 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 12:06:13 EDT 2025 Wed Aug 13 06:28:01 EDT 2025 Wed Aug 13 09:05:52 EDT 2025 Mon Jul 21 05:59:20 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 01:56:30 EDT 2025 Fri Feb 21 02:41:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-ecd1ad893beb7e545ca62696cc94e4ca6330f3c727e0cd580bb8e21dbface2403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0397-7741 0000-0003-2248-3253 |
PMID | 32601448 |
PQID | 2421630817 |
PQPubID | 546299 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2419084705 proquest_journals_2475047393 proquest_journals_2421630817 pubmed_primary_32601448 crossref_citationtrail_10_1038_s41565_020_0715_4 crossref_primary_10_1038_s41565_020_0715_4 springer_journals_10_1038_s41565_020_0715_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Chang (CR11) 2018; 17 Novoselov (CR2) 2005; 438 Nakayama (CR7) 2017; 95 Pisoni (CR30) 2018; 121 Klitzing, Dorda, Pepper (CR38) 1980; 45 CR39 Zhang (CR14) 2017; 96 Wu, Qiu, Wang, Wang, Ye (CR20) 2018; 47 Dhillon, Shoenberg (CR47) 1955; 248 CR32 Ando (CR41) 2013; 82 Alexandradinata, Wang, Duan, Glazman (CR48) 2018; 8 von Klitzing, Landwehr (CR15) 1971; 9 Şahin, Rou, Ma, Pesin (CR10) 2018; 97 Zhang, Tan, Stormer, Kim (CR3) 2005; 438 Li (CR24) 2016; 11 Wu (CR29) 2016; 7 Wang (CR18) 2018; 1 Berweger (CR33) 2019; 19 Yang (CR25) 2018; 18 Xiong (CR42) 2012; 44 Silbermann, Landwehr (CR16) 1975; 16 Tsirkin, Puente, Souza (CR8) 2018; 97 Movva (CR28) 2017; 118 Liu, Neal, Si, Du, Ye (CR34) 2014; 35 Rotenberg (CR51) 2011; 7 Zhao (CR45) 2015; 5 Gusynin, Sharapov (CR22) 2005; 95 Sanchez (CR13) 2019; 567 Hirayama, Okugawa, Ishibashi, Murakami, Miyake (CR6) 2015; 114 von Klitzing (CR17) 1974; 15 Perello, Chae, Song, Lee (CR35) 2015; 6 CR50 Shinno, Yoshizaki, Tanaka, Doi, Kamimura (CR53) 1973; 35 Xu (CR49) 2017; 118 Ren (CR31) 2019; 19 Armitage, Mele, Vishwanath (CR4) 2018; 90 Wang (CR36) 2018; 18 Roth (CR46) 1966; 145 Ren, Taskin, Sasaki, Segawa, Ando (CR40) 2010; 82 Agapito, Kioussis, Goddard, Ong (CR9) 2013; 110 Geim, Novoselov (CR1) 2007; 6 Rao (CR12) 2019; 567 Fallahazad (CR27) 2016; 116 Liu, Wu, Goddard (CR54) 2018; 140 Li (CR23) 2015; 10 Hu (CR44) 2016; 6 Bandurin (CR26) 2017; 12 Zasadzinski, Viswanathan, Madsen, Garnaes, Schwartz (CR55) 1994; 263 Hasan, Xu, Belopolski, Huang (CR5) 2017; 8 Mallet (CR52) 2012; 86 Coss (CR37) 2009; 95 Yu (CR43) 2016; 6 Du (CR19) 2017; 17 Qiu (CR21) 2018; 18 Y Liu (715_CR54) 2018; 140 W Wu (715_CR20) 2018; 47 715_CR39 G Qiu (715_CR21) 2018; 18 B Fallahazad (715_CR27) 2016; 116 715_CR32 Z Ren (715_CR40) 2010; 82 DS Sanchez (715_CR13) 2019; 567 K von Klitzing (715_CR15) 1971; 9 K von Klitzing (715_CR17) 1974; 15 BE Coss (715_CR37) 2009; 95 CH Wang (715_CR36) 2018; 18 J Xiong (715_CR42) 2012; 44 LA Agapito (715_CR9) 2013; 110 A Alexandradinata (715_CR48) 2018; 8 HCP Movva (715_CR28) 2017; 118 AK Geim (715_CR1) 2007; 6 SS Tsirkin (715_CR8) 2018; 97 P Mallet (715_CR52) 2012; 86 YB Zhang (715_CR3) 2005; 438 Z Wu (715_CR29) 2016; 7 J Hu (715_CR44) 2016; 6 S Berweger (715_CR33) 2019; 19 L Roth (715_CR46) 1966; 145 K Nakayama (715_CR7) 2017; 95 L Li (715_CR24) 2016; 11 CL Zhang (715_CR14) 2017; 96 R Pisoni (715_CR30) 2018; 121 MZ Hasan (715_CR5) 2017; 8 Y Ando (715_CR41) 2013; 82 Z Rao (715_CR12) 2019; 567 H Liu (715_CR34) 2014; 35 NP Armitage (715_CR4) 2018; 90 R Silbermann (715_CR16) 1975; 16 JS Dhillon (715_CR47) 1955; 248 715_CR50 X Ren (715_CR31) 2019; 19 KV Klitzing (715_CR38) 1980; 45 VP Gusynin (715_CR22) 2005; 95 C Şahin (715_CR10) 2018; 97 E Rotenberg (715_CR51) 2011; 7 G Chang (715_CR11) 2018; 17 Y Wang (715_CR18) 2018; 1 M Hirayama (715_CR6) 2015; 114 L Li (715_CR23) 2015; 10 JA Zasadzinski (715_CR55) 1994; 263 KS Novoselov (715_CR2) 2005; 438 Y Du (715_CR19) 2017; 17 J Yang (715_CR25) 2018; 18 Y Zhao (715_CR45) 2015; 5 S Xu (715_CR49) 2017; 118 H Shinno (715_CR53) 1973; 35 DJ Perello (715_CR35) 2015; 6 DA Bandurin (715_CR26) 2017; 12 W Yu (715_CR43) 2016; 6 |
References_xml | – volume: 118 start-page: 247701 year: 2017 ident: CR28 article-title: Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe publication-title: Phys. Rev. Lett. – volume: 97 start-page: 035158 year: 2018 ident: CR8 article-title: Gyrotropic effects in trigonal tellurium studied from first principles publication-title: Phys. Rev. B – volume: 263 start-page: 1726 year: 1994 end-page: 1733 ident: CR55 article-title: Langmuir-Blodgett films publication-title: Science – volume: 7 year: 2016 ident: CR29 article-title: Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides publication-title: Nat. Commun. – volume: 118 start-page: 067702 year: 2017 ident: CR49 article-title: Odd-integer quantum hall states and giant spin susceptibility in p-type few-layer WSe publication-title: Phys. Rev. Lett. – volume: 8 start-page: 11027 year: 2018 ident: CR48 article-title: Revealing the topology of Fermi-surface wave functions from magnetic quantum oscillations publication-title: Phys. Rev. X – volume: 10 start-page: 608 year: 2015 end-page: 613 ident: CR23 article-title: Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films publication-title: Nat. Nanotechnol. – ident: CR39 – volume: 116 start-page: 1 year: 2016 end-page: 5 ident: CR27 article-title: Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe : Landau level degeneracy, effective mass, and negative compressibility publication-title: Phys. Rev. Lett. – volume: 9 start-page: 2201 year: 1971 end-page: 2205 ident: CR15 article-title: Surface quantum states in tellurium publication-title: Solid State Commun. – volume: 19 start-page: 1289 year: 2019 end-page: 1294 ident: CR33 article-title: Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors publication-title: Nano Lett. – volume: 567 start-page: 500 year: 2019 end-page: 505 ident: CR13 article-title: Topological chiral crystals with helicoid-arc quantum states publication-title: Nature – volume: 90 start-page: 015001 year: 2018 ident: CR4 article-title: Weyl and Dirac semimetals in three-dimensional solids publication-title: Rev. Mod. Phys. – volume: 1 start-page: 228 year: 2018 end-page: 236 ident: CR18 article-title: Field-effect transistors made from solution-grown two-dimensional tellurene publication-title: Nat. Electron. – volume: 114 start-page: 206401 year: 2015 ident: CR6 article-title: Weyl node and spin texture in trigonal tellurium and selenium publication-title: Phys. Rev. Lett. – ident: CR50 – volume: 82 start-page: 241306 year: 2010 ident: CR40 article-title: Large bulk resistivity and surface quantum oscillations in the topological insulator Bi Te Se publication-title: Phys. Rev. B – volume: 19 start-page: 4738 year: 2019 end-page: 4744 ident: CR31 article-title: Gate-tuned insulator-metal transition in electrolyte-gated transistors based on tellurene publication-title: Nano Lett. – volume: 248 start-page: 1 year: 1955 end-page: 21 ident: CR47 article-title: The de Haas-van alphen effect III. Experiments at fields up to 32 KG publication-title: Philos. Trans. R. Soc. A – volume: 6 year: 2016 ident: CR43 article-title: Quantum oscillations at integer and fractional Landau level indices in single-crystalline ZrTe publication-title: Sci. Rep. – ident: CR32 – volume: 6 year: 2016 ident: CR44 article-title: π Berry phase and Zeeman splitting of Weyl semimetal TaP publication-title: Sci. Rep. – volume: 35 start-page: 525 year: 1973 end-page: 533 ident: CR53 article-title: Conduction band structure of tellurium publication-title: J. Phys. Soc. Jpn. – volume: 97 start-page: 205206 year: 2018 ident: CR10 article-title: Pancharatnam-Berry phase and kinetic magnetoelectric effect in trigonal tellurium publication-title: Phys. Rev. B – volume: 438 start-page: 197 year: 2005 end-page: 200 ident: CR2 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature – volume: 45 start-page: 494 year: 1980 end-page: 497 ident: CR38 article-title: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance publication-title: Phys. Rev. Lett. – volume: 95 start-page: 146801 year: 2005 ident: CR22 article-title: Unconventional integer quantum Hall effect in graphene publication-title: Phys. Rev. Lett. – volume: 17 start-page: 3965 year: 2017 end-page: 3973 ident: CR19 article-title: One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport publication-title: Nano Lett. – volume: 12 start-page: 223 year: 2017 end-page: 227 ident: CR26 article-title: High electron mobility, quantum Hall effect and anomalous optical response in atomically thin Inse publication-title: Nat. Nanotechnol. – volume: 438 start-page: 201 year: 2005 end-page: 204 ident: CR3 article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene publication-title: Nature – volume: 110 start-page: 176401 year: 2013 ident: CR9 article-title: Novel family of chiral-based topological insulators: elemental tellurium under strain publication-title: Phys. Rev. Lett. – volume: 15 start-page: 1721 year: 1974 end-page: 1725 ident: CR17 article-title: Magnetophonon oscillations in tellurium under hot carrier conditions publication-title: Solid State Commun. – volume: 16 start-page: 6 year: 1975 end-page: 9 ident: CR16 article-title: Surface quantum oscillations in accumulation and inversion layers on tellurium publication-title: Solid State Commun. – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: CR1 article-title: The rise of graphene publication-title: Nat. Mater. – volume: 18 start-page: 229 year: 2018 end-page: 234 ident: CR25 article-title: Integer and fractional quantum Hall effect in ultra-high quality few-layer black phosphorus transistors publication-title: Nano Lett. – volume: 44 start-page: 917 year: 2012 end-page: 920 ident: CR42 article-title: Quantum oscillations in a topological insulator Bi Te Se with large bulk resistivity (6Ω∙cm) publication-title: Phys. E – volume: 121 start-page: 247701 year: 2018 ident: CR30 article-title: Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS publication-title: Phys. Rev. Lett. – volume: 95 start-page: 222105 year: 2009 ident: CR37 article-title: Near band edge Schottky barrier height modulation using high-κ dielectric dipole tuning mechanism publication-title: Appl. Phys. Lett. – volume: 82 start-page: 102001 year: 2013 ident: CR41 article-title: Topological insulator materials publication-title: J. Phys. Soc. Jpn. – volume: 35 start-page: 795 year: 2014 end-page: 797 ident: CR34 article-title: The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights publication-title: IEEE Electron Device Lett. – volume: 17 start-page: 978 year: 2018 ident: CR11 article-title: Topological quantum properties of chiral crystals publication-title: Nat. Mater. doi: 10.1038/s41563-018-0169-3 – volume: 7 start-page: 8 year: 2011 end-page: 10 ident: CR51 article-title: Topological insulators: The dirt on topology publication-title: Nat. Phys. – volume: 567 start-page: 496 year: 2019 end-page: 499 ident: CR12 article-title: Observation of unconventional chiral fermions with long Fermi arcs in CoSi publication-title: Nature – volume: 145 start-page: 434 year: 1966 ident: CR46 article-title: Semiclassical theory of magnetic energy levels and magnetic susceptibility of Bloch electrons publication-title: Phys. Rev. – volume: 18 start-page: 5760 year: 2018 end-page: 5767 ident: CR21 article-title: Quantum transport and band structure evolution under high magnetic field in few-layer tellurene publication-title: Nano Lett. – volume: 5 start-page: 031037 year: 2015 ident: CR45 article-title: Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional dirac semimetal Cd As publication-title: Phys. Rev. X – volume: 18 start-page: 2822 year: 2018 end-page: 2827 ident: CR36 article-title: Unipolar n-type black phosphorus transistors with low work function contacts publication-title: Nano Lett. – volume: 6 year: 2015 ident: CR35 article-title: High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering publication-title: Nat. Commun. – volume: 8 start-page: 289 year: 2017 end-page: 309 ident: CR5 article-title: Discovery of Weyl fermion semimetals and topological Fermi arc states publication-title: Annu. Rev. Condens. Matter Phys. – volume: 96 start-page: 1 year: 2017 end-page: 10 ident: CR14 article-title: Ultraquantum magnetoresistance in the Kramers–Weyl semimetal candidate β-Ag Se publication-title: Phys. Rev. B – volume: 140 start-page: 550 year: 2018 end-page: 553 ident: CR54 article-title: Tellurium: fast electrical and atomic transport along the weak interaction direction publication-title: J. Am. Chem. Soc. – volume: 95 start-page: 125204 year: 2017 ident: CR7 article-title: Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory publication-title: Phys. Rev. B – volume: 86 start-page: 045444 year: 2012 ident: CR52 article-title: Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy publication-title: Phys. Rev. B – volume: 11 start-page: 593 year: 2016 end-page: 597 ident: CR24 article-title: Quantum hall effect in black phosphorus two-dimensional electron system publication-title: Nat. Nanotechnol. – volume: 47 start-page: 7203 year: 2018 end-page: 7212 ident: CR20 article-title: Tellurene: its physical properties, scalable nanomanufacturing, and device applications publication-title: Chem. Soc. Rev. – ident: 715_CR50 doi: 10.1103/PhysRevB.101.205414 – volume: 95 start-page: 146801 year: 2005 ident: 715_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.146801 – volume: 7 year: 2016 ident: 715_CR29 publication-title: Nat. Commun. – volume: 140 start-page: 550 year: 2018 ident: 715_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09964 – volume: 6 start-page: 183 year: 2007 ident: 715_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 17 start-page: 3965 year: 2017 ident: 715_CR19 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01717 – volume: 35 start-page: 795 year: 2014 ident: 715_CR34 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2014.2323951 – volume: 90 start-page: 015001 year: 2018 ident: 715_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015001 – ident: 715_CR39 – volume: 248 start-page: 1 year: 1955 ident: 715_CR47 publication-title: Philos. Trans. R. Soc. A – volume: 45 start-page: 494 year: 1980 ident: 715_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 438 start-page: 201 year: 2005 ident: 715_CR3 publication-title: Nature doi: 10.1038/nature04235 – volume: 8 start-page: 289 year: 2017 ident: 715_CR5 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031016-025225 – volume: 19 start-page: 4738 year: 2019 ident: 715_CR31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01827 – volume: 7 start-page: 8 year: 2011 ident: 715_CR51 publication-title: Nat. Phys. doi: 10.1038/nphys1869 – volume: 116 start-page: 1 year: 2016 ident: 715_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.086601 – volume: 17 start-page: 978 year: 2018 ident: 715_CR11 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0169-3 – volume: 110 start-page: 176401 year: 2013 ident: 715_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.176401 – volume: 96 start-page: 1 year: 2017 ident: 715_CR14 publication-title: Phys. Rev. B – volume: 9 start-page: 2201 year: 1971 ident: 715_CR15 publication-title: Solid State Commun. doi: 10.1016/0038-1098(71)90630-2 – volume: 6 year: 2015 ident: 715_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms8809 – volume: 6 year: 2016 ident: 715_CR44 publication-title: Sci. Rep. – volume: 82 start-page: 102001 year: 2013 ident: 715_CR41 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.82.102001 – volume: 11 start-page: 593 year: 2016 ident: 715_CR24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.42 – volume: 5 start-page: 031037 year: 2015 ident: 715_CR45 publication-title: Phys. Rev. X – volume: 438 start-page: 197 year: 2005 ident: 715_CR2 publication-title: Nature doi: 10.1038/nature04233 – volume: 47 start-page: 7203 year: 2018 ident: 715_CR20 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00598B – volume: 18 start-page: 229 year: 2018 ident: 715_CR25 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03954 – volume: 35 start-page: 525 year: 1973 ident: 715_CR53 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.35.525 – volume: 10 start-page: 608 year: 2015 ident: 715_CR23 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.91 – volume: 118 start-page: 247701 year: 2017 ident: 715_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.247701 – volume: 8 start-page: 11027 year: 2018 ident: 715_CR48 publication-title: Phys. Rev. X – volume: 567 start-page: 500 year: 2019 ident: 715_CR13 publication-title: Nature doi: 10.1038/s41586-019-1037-2 – volume: 567 start-page: 496 year: 2019 ident: 715_CR12 publication-title: Nature doi: 10.1038/s41586-019-1031-8 – volume: 18 start-page: 5760 year: 2018 ident: 715_CR21 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02368 – volume: 95 start-page: 125204 year: 2017 ident: 715_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.125204 – volume: 6 year: 2016 ident: 715_CR43 publication-title: Sci. Rep. – volume: 86 start-page: 045444 year: 2012 ident: 715_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.045444 – volume: 121 start-page: 247701 year: 2018 ident: 715_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.247701 – volume: 118 start-page: 067702 year: 2017 ident: 715_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.067702 – volume: 82 start-page: 241306 year: 2010 ident: 715_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.241306 – volume: 15 start-page: 1721 year: 1974 ident: 715_CR17 publication-title: Solid State Commun. doi: 10.1016/0038-1098(74)91220-4 – volume: 97 start-page: 205206 year: 2018 ident: 715_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.205206 – volume: 97 start-page: 035158 year: 2018 ident: 715_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035158 – volume: 19 start-page: 1289 year: 2019 ident: 715_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04865 – volume: 16 start-page: 6 year: 1975 ident: 715_CR16 publication-title: Solid State Commun. doi: 10.1016/0038-1098(75)90002-2 – volume: 1 start-page: 228 year: 2018 ident: 715_CR18 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0058-4 – volume: 12 start-page: 223 year: 2017 ident: 715_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.242 – volume: 95 start-page: 222105 year: 2009 ident: 715_CR37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3263719 – volume: 145 start-page: 434 year: 1966 ident: 715_CR46 publication-title: Phys. Rev. doi: 10.1103/PhysRev.145.434 – ident: 715_CR32 doi: 10.1109/DRC.2018.8442253 – volume: 44 start-page: 917 year: 2012 ident: 715_CR42 publication-title: Phys. E doi: 10.1016/j.physe.2011.09.011 – volume: 114 start-page: 206401 year: 2015 ident: 715_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.206401 – volume: 18 start-page: 2822 year: 2018 ident: 715_CR36 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05192 – volume: 263 start-page: 1726 year: 1994 ident: 715_CR55 publication-title: Science doi: 10.1126/science.8134836 |
SSID | ssj0052924 |
Score | 2.607499 |
Snippet | Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 585 |
SubjectTerms | 639/301/1005/1007 639/301/119/2794 639/925/357/1018 Chemistry and Materials Science Conduction Conduction bands Crystal structure Electrons Elementary excitations Energy gap Fermions Hydrothermal crystal growth Magnetic fields Magnetic properties Materials Science Metalloids N-type semiconductors Nanotechnology Nanotechnology and Microengineering Nodes Quantum Hall effect Quantum mechanics Relativistic effects Semiconductors Tellurium Topology |
Title | Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene |
URI | https://link.springer.com/article/10.1038/s41565-020-0715-4 https://www.ncbi.nlm.nih.gov/pubmed/32601448 https://www.proquest.com/docview/2421630817 https://www.proquest.com/docview/2475047393 https://www.proquest.com/docview/2419084705 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-65GV7GGv35S0tGuxpQ1S25K-n0o2modCwjZXlzejjAoXM7pb4Yf_97mI73Sjti0FIMuJO0t3p7n4H8D6oEBvUHDYYk4ESCiddoZw0GLQvsUxswgnOl_NsdmUuFumif3Bb92GVw524vahD4_mN_Jhdl5kmAZaf3PySXDWKvat9CY1HMGboMg7pyhc7gytNyq6obW4KSaZYPng1dXG8ZsOFc5MVp_Ck0vwvl-4om3ccpVv5M30GT3vFUZx2nN6HPawP4Mk_cILP4fxrS3Rqf4qZXa1EF6khmqX4gX9WYslRL7TFxHUtaskvr2LNgfFNzYivNF9wPknLCJcv4Gp69v3zTPaFEqQ3WbaR6ENsA2keDl2OpBN5S3ZKmXlfGjTU0FottSdVBZUPKfHCFZjEwS2tRwbkewmjuqnxNYgYyaRSiCbz2litndFWpUqFUFgs8zICNZCp8j2KOBezWFVbb7Yuqo6yFVG2YspWJoIPuyk3HYTGQ4MnA-2r_jStq1ve39PNGPUM7RfBu103HRP2fdgam5bHkOZDklilEbzqWLpbjGZYNTJTI_g48Pj25_eu9M3DK30Lj5Nud0kVT2C0-d3iIekvG3e03aT0LabnRzD-dDb_8u0v1z3sDQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOQAHxJuBAkGCCyhqZpJ5HRBCwHZLHxJSK3pL8_BKSMtMYXeE-qf4jdg7O1tQ1d56HGUSRbYT27H9GeBVVDE1qDltMCUHJVZe-kp5aTDqUGOduYwLnPf2i_Gh-XKUH63Bn6EWhtMqhztxcVHHNvAb-SaHLgtNCqx8f_JTctcojq4OLTR6sdjB09_kss3ebX8i_r7OstHng49juewqIIMpirnEEFMXSU179CWSAREcGfV1EUJt0NAHefgTHUivowoxp437CrM0-okLyOh1tO41uG60rvlEVaOt4ebPs7pvoluaSpLrVw5RVF1tzthR4lpoxSVDuTT_68Fzxu25wOxC343uwO2loSo-9JJ1F9awuQe3_oEvvA9bXzviS_dDjN10KvrMENFOxDc8nYoJZ9mQSIvvjWgkv_SKGSfitw0jzNJ8wfUrHSNqPoDDKyHhQ1hv2gYfg0iRXDiFaIqgjdPaG-1UrlSMlcO6rBNQA5lsWKKWc_OMqV1Ez3Vle8paoqxlylqTwJvVlJMesuOynzcG2tvl6Z3ZM1m7YJgx8RlKMIGXq2E6lhxrcQ22Hf9DlhZpfpUn8Khn6WozmmHcyC1O4O3A47PFL9zpk8t3-gJujA_2du3u9v7OU7iZ9ZImVboB6_NfHT4j22nuny8EVsDxVZ-Qv0pgKHY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBdEH8du0VVfQF2W5TXbz9SAi1vNqtShYvLc0uzsB4Zq0vQvSf61_nTOX5KqU9q2PIdmwmY_MzM7MbwBeeeVDg5rLBkMKUHxmpc2UlQa9djnmURlxg_O3vWSyb75M4-kanA29MFxWOfwTlz9q3zg-Ix9x6jLRZMDSUdWXRXzfHr8_OpY8QYozrcM4jU5EdvH0D4Vv83c728Tr11E0_vTz40T2EwakM0mykOh8WHoy2RZtiuRMuJIc_DxxLjdo6IKi_Uo7svGonI_pI2yGUehtVTpkJDt67w24meo4ZB1Lp6tgL47ybqBuajJJYWA6ZFR1Nppz0MR90Yrbh2Jp_reJFxzdC0nape0b34O7vdMqPnRSdh_WsH4Ad_6BMnwIn3-0xKP2UEzK2Ux0VSKiqcQvPJ2JiituSLzF71rUkk99xZyL8pua0WZpveBelpbRNR_B_rWQ8DGs102NT0GESOGcQjSJ06bU2hpdqlgp77MS8zQPQA1kKlyPYM6DNGbFMpOus6KjbEGULZiyhQngzWrJUQffcdXDWwPti16T58W53F1ym_HxGVYwgJer26SinHcpa2xafoa8LvICVBzAk46lq81ohnSjEDmAtwOPz19-6U43rt7pC7hFulF83dnb3YTbUSdoUoVbsL44afEZuVEL-3wprwIOrltB_gIGCiyj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Hall+effect+of+Weyl+fermions+in+n-type+semiconducting+tellurene&rft.jtitle=Nature+nanotechnology&rft.au=Qiu%2C+Gang&rft.au=Niu%2C+Chang&rft.au=Wang%2C+Yixiu&rft.au=Si%2C+Mengwei&rft.date=2020-07-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=7&rft.spage=585&rft.epage=591&rft_id=info:doi/10.1038%2Fs41565-020-0715-4&rft.externalDocID=10_1038_s41565_020_0715_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |