Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene

Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable ba...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 15; no. 7; pp. 585 - 591
Main Authors Qiu, Gang, Niu, Chang, Wang, Yixiu, Si, Mengwei, Zhang, Zhuocheng, Wu, Wenzhuo, Ye, Peide D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors. The accidental band-crossing origin of Weyl nodes paired with the absence of sizeable band gaps hampers the exploitation of low-energy relativistic quasiparticles in Weyl semimetals. In a gate-tunable high-quality tellurene film, quantum Hall measurements unveil a topologically non-trivial π Berry phase caused by unconventional Weyl nodes in these tellurium two-dimensional sheets.
AbstractList Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors.
Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors.Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors.
Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors.The accidental band-crossing origin of Weyl nodes paired with the absence of sizeable band gaps hampers the exploitation of low-energy relativistic quasiparticles in Weyl semimetals. In a gate-tunable high-quality tellurene film, quantum Hall measurements unveil a topologically non-trivial π Berry phase caused by unconventional Weyl nodes in these tellurium two-dimensional sheets.
Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin. Here, we report the first experimental observation of Weyl fermions in a semiconductor. Tellurene, the two-dimensional form of tellurium, possesses a chiral crystal structure which induces unconventional Weyl nodes with a hedgehog-like radial spin texture near the conduction band edge. We synthesize high-quality n-type tellurene by a hydrothermal method with subsequent dielectric doping and detect a topologically non-trivial π Berry phase in quantum Hall sequences. Our work expands the spectrum of Weyl matter into semiconductors and offers a new platform to design novel quantum devices by marrying the advantages of topological materials to versatile semiconductors. The accidental band-crossing origin of Weyl nodes paired with the absence of sizeable band gaps hampers the exploitation of low-energy relativistic quasiparticles in Weyl semimetals. In a gate-tunable high-quality tellurene film, quantum Hall measurements unveil a topologically non-trivial π Berry phase caused by unconventional Weyl nodes in these tellurium two-dimensional sheets.
Author Qiu, Gang
Si, Mengwei
Zhang, Zhuocheng
Wu, Wenzhuo
Niu, Chang
Wang, Yixiu
Ye, Peide D.
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0003-2248-3253
  surname: Qiu
  fullname: Qiu, Gang
  organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University
– sequence: 2
  givenname: Chang
  surname: Niu
  fullname: Niu, Chang
  organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University
– sequence: 3
  givenname: Yixiu
  surname: Wang
  fullname: Wang, Yixiu
  organization: School of Industrial Engineering, Purdue University
– sequence: 4
  givenname: Mengwei
  orcidid: 0000-0003-0397-7741
  surname: Si
  fullname: Si, Mengwei
  organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University
– sequence: 5
  givenname: Zhuocheng
  surname: Zhang
  fullname: Zhang, Zhuocheng
  organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University
– sequence: 6
  givenname: Wenzhuo
  surname: Wu
  fullname: Wu, Wenzhuo
  organization: School of Industrial Engineering, Purdue University
– sequence: 7
  givenname: Peide D.
  surname: Ye
  fullname: Ye, Peide D.
  email: yep@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Centre, Purdue University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32601448$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1L5TAUhsPgMH7-ADcScOOmzslXky5F9CoIMjDDLEOankqlTa9Jurj_3sj1AwRd5QSe5_By3n2yE-aAhBwzOGcgzO8kmapVBRwq0ExV8gfZY1qaSohG7bzPRu-S_ZQeARRvuPxFdgWvgUlp9sjqz-JCXiZ648aRYt-jz3Tu6X_cjLTHOA1zSHQINFR5s0aacBr8HLrF5yE80IzjuEQMeEh-9m5MePT6HpB_11d_L2-qu_vV7eXFXeVlXecKfcdcZxrRYqtRSeVdzeum9r6RKMtHCOiF11wj-E4ZaFuDnHVt7zxyCeKAnG33ruP8tGDKdhqSLylcwHlJlkvWgJEaVEFPP6GP8xJDSVcorUBq0YjvKc5qAYbpQp28Uks7YWfXcZhc3Ni3QxZAbwEf55Qi9tYP2eVyvRzdMFoG9qUyu63MlsrsS2VWFpN9Mt-Wf-fwrZMKGx4wfoT-WnoG7UCmhg
CitedBy_id crossref_primary_10_1038_s41578_021_00380_2
crossref_primary_10_1103_PhysRevB_111_075145
crossref_primary_10_1039_D4CS00999A
crossref_primary_10_1039_D1NH00253H
crossref_primary_10_1007_s11661_023_07189_4
crossref_primary_10_1021_acsanm_4c00510
crossref_primary_10_1088_1674_1056_ac0a5e
crossref_primary_10_1002_smll_202207641
crossref_primary_10_1088_0256_307X_40_11_117102
crossref_primary_10_1103_PhysRevB_108_245409
crossref_primary_10_1126_sciadv_adn0560
crossref_primary_10_1038_s41467_020_17766_5
crossref_primary_10_7566_JPSJ_90_044711
crossref_primary_10_1002_smll_202311317
crossref_primary_10_1016_j_xcrp_2024_102356
crossref_primary_10_1039_D4NR04176C
crossref_primary_10_1103_PhysRevApplied_17_054044
crossref_primary_10_1002_admi_202002050
crossref_primary_10_1103_PhysRevB_109_245126
crossref_primary_10_1021_acsami_2c20400
crossref_primary_10_1016_j_isci_2021_103594
crossref_primary_10_1021_acsnano_4c02352
crossref_primary_10_1002_asia_202301152
crossref_primary_10_1002_adfm_202104192
crossref_primary_10_1016_j_nanoen_2023_108552
crossref_primary_10_1103_PhysRevB_110_014311
crossref_primary_10_1021_acs_nanolett_1c01705
crossref_primary_10_1038_s41467_022_35396_x
crossref_primary_10_1038_s41467_022_33190_3
crossref_primary_10_1088_2515_7655_acc7c8
crossref_primary_10_1126_sciadv_adp8208
crossref_primary_10_1038_s41586_024_07484_z
crossref_primary_10_1088_1361_648X_acc5ca
crossref_primary_10_1021_acs_nanolett_4c05279
crossref_primary_10_1002_aelm_202200653
crossref_primary_10_1038_s41467_024_46626_9
crossref_primary_10_1038_s41565_024_01732_z
crossref_primary_10_1038_s41699_022_00293_w
crossref_primary_10_1038_s41467_024_52062_6
crossref_primary_10_3390_cryst9100486
crossref_primary_10_1002_adfm_202300141
crossref_primary_10_1016_j_physe_2021_114673
crossref_primary_10_1021_acs_nanolett_3c02703
crossref_primary_10_1039_D1NA00073J
crossref_primary_10_1063_5_0025955
crossref_primary_10_1002_aelm_202400648
crossref_primary_10_1016_j_apsusc_2021_152398
crossref_primary_10_1103_PhysRevLett_125_216402
crossref_primary_10_1038_s41467_024_49706_y
crossref_primary_10_1016_j_mtcomm_2022_105075
crossref_primary_10_1002_adma_202309023
crossref_primary_10_1002_adfm_202203003
crossref_primary_10_1038_s41467_023_38090_8
crossref_primary_10_1103_PhysRevB_108_195121
crossref_primary_10_1039_D2NR03226K
crossref_primary_10_1039_D4NR04930F
crossref_primary_10_1016_j_isci_2023_106177
crossref_primary_10_2139_ssrn_3917174
crossref_primary_10_1109_TED_2022_3198926
crossref_primary_10_1039_C9CS00821G
crossref_primary_10_1021_acs_nanolett_0c03897
crossref_primary_10_1002_adma_202204697
crossref_primary_10_1088_2053_1583_ac787f
crossref_primary_10_1021_acsnano_3c03893
crossref_primary_10_1007_s11432_022_3695_1
crossref_primary_10_1038_s41563_022_01211_7
crossref_primary_10_1103_PhysRevB_103_235421
crossref_primary_10_1109_TMAT_2024_3394400
crossref_primary_10_1002_adma_202306962
crossref_primary_10_1063_5_0245526
crossref_primary_10_1007_s12274_022_4330_6
crossref_primary_10_1103_PhysRevLett_133_236201
crossref_primary_10_1039_D4QM01089B
crossref_primary_10_1021_acs_nanolett_3c05085
crossref_primary_10_1016_j_ssc_2025_115922
crossref_primary_10_1088_1361_648X_ad2805
crossref_primary_10_1039_D3MA00579H
crossref_primary_10_1002_admt_202101623
crossref_primary_10_1038_s42005_023_01460_1
crossref_primary_10_1021_acs_nanolett_4c02224
crossref_primary_10_1002_smll_202005801
crossref_primary_10_1021_acsnano_4c02662
crossref_primary_10_1039_D2CY00107A
crossref_primary_10_1126_sciadv_abn3837
crossref_primary_10_1103_PhysRevB_105_035126
crossref_primary_10_1021_acs_nanolett_3c01797
crossref_primary_10_1002_adma_202408969
crossref_primary_10_1038_s41565_022_01248_4
crossref_primary_10_1039_D4MA00572D
crossref_primary_10_1021_acs_nanolett_3c00780
crossref_primary_10_1016_j_nanoen_2021_106049
crossref_primary_10_1002_adma_202306330
Cites_doi 10.1038/s41563-018-0169-3
10.1103/PhysRevB.101.205414
10.1103/PhysRevLett.95.146801
10.1021/jacs.7b09964
10.1038/nmat1849
10.1021/acs.nanolett.7b01717
10.1109/LED.2014.2323951
10.1103/RevModPhys.90.015001
10.1103/PhysRevLett.45.494
10.1038/nature04235
10.1146/annurev-conmatphys-031016-025225
10.1021/acs.nanolett.9b01827
10.1038/nphys1869
10.1103/PhysRevLett.116.086601
10.1103/PhysRevLett.110.176401
10.1016/0038-1098(71)90630-2
10.1038/ncomms8809
10.7566/JPSJ.82.102001
10.1038/nnano.2016.42
10.1038/nature04233
10.1039/C8CS00598B
10.1021/acs.nanolett.7b03954
10.1143/JPSJ.35.525
10.1038/nnano.2015.91
10.1103/PhysRevLett.118.247701
10.1038/s41586-019-1037-2
10.1038/s41586-019-1031-8
10.1021/acs.nanolett.8b02368
10.1103/PhysRevB.95.125204
10.1103/PhysRevB.86.045444
10.1103/PhysRevLett.121.247701
10.1103/PhysRevLett.118.067702
10.1103/PhysRevB.82.241306
10.1016/0038-1098(74)91220-4
10.1103/PhysRevB.97.205206
10.1103/PhysRevB.97.035158
10.1021/acs.nanolett.8b04865
10.1016/0038-1098(75)90002-2
10.1038/s41928-018-0058-4
10.1038/nnano.2016.242
10.1063/1.3263719
10.1103/PhysRev.145.434
10.1109/DRC.2018.8442253
10.1016/j.physe.2011.09.011
10.1103/PhysRevLett.114.206401
10.1021/acs.nanolett.7b05192
10.1126/science.8134836
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
DOI 10.1038/s41565-020-0715-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
ProQuest Central Student
ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 591
ExternalDocumentID 32601448
10_1038_s41565_020_0715_4
Genre Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c466t-ecd1ad893beb7e545ca62696cc94e4ca6330f3c727e0cd580bb8e21dbface2403
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 12:06:13 EDT 2025
Wed Aug 13 06:28:01 EDT 2025
Wed Aug 13 09:05:52 EDT 2025
Mon Jul 21 05:59:20 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Tue Jul 01 01:56:30 EDT 2025
Fri Feb 21 02:41:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-ecd1ad893beb7e545ca62696cc94e4ca6330f3c727e0cd580bb8e21dbface2403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0397-7741
0000-0003-2248-3253
PMID 32601448
PQID 2421630817
PQPubID 546299
PageCount 7
ParticipantIDs proquest_miscellaneous_2419084705
proquest_journals_2475047393
proquest_journals_2421630817
pubmed_primary_32601448
crossref_citationtrail_10_1038_s41565_020_0715_4
crossref_primary_10_1038_s41565_020_0715_4
springer_journals_10_1038_s41565_020_0715_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chang (CR11) 2018; 17
Novoselov (CR2) 2005; 438
Nakayama (CR7) 2017; 95
Pisoni (CR30) 2018; 121
Klitzing, Dorda, Pepper (CR38) 1980; 45
CR39
Zhang (CR14) 2017; 96
Wu, Qiu, Wang, Wang, Ye (CR20) 2018; 47
Dhillon, Shoenberg (CR47) 1955; 248
CR32
Ando (CR41) 2013; 82
Alexandradinata, Wang, Duan, Glazman (CR48) 2018; 8
von Klitzing, Landwehr (CR15) 1971; 9
Şahin, Rou, Ma, Pesin (CR10) 2018; 97
Zhang, Tan, Stormer, Kim (CR3) 2005; 438
Li (CR24) 2016; 11
Wu (CR29) 2016; 7
Wang (CR18) 2018; 1
Berweger (CR33) 2019; 19
Yang (CR25) 2018; 18
Xiong (CR42) 2012; 44
Silbermann, Landwehr (CR16) 1975; 16
Tsirkin, Puente, Souza (CR8) 2018; 97
Movva (CR28) 2017; 118
Liu, Neal, Si, Du, Ye (CR34) 2014; 35
Rotenberg (CR51) 2011; 7
Zhao (CR45) 2015; 5
Gusynin, Sharapov (CR22) 2005; 95
Sanchez (CR13) 2019; 567
Hirayama, Okugawa, Ishibashi, Murakami, Miyake (CR6) 2015; 114
von Klitzing (CR17) 1974; 15
Perello, Chae, Song, Lee (CR35) 2015; 6
CR50
Shinno, Yoshizaki, Tanaka, Doi, Kamimura (CR53) 1973; 35
Xu (CR49) 2017; 118
Ren (CR31) 2019; 19
Armitage, Mele, Vishwanath (CR4) 2018; 90
Wang (CR36) 2018; 18
Roth (CR46) 1966; 145
Ren, Taskin, Sasaki, Segawa, Ando (CR40) 2010; 82
Agapito, Kioussis, Goddard, Ong (CR9) 2013; 110
Geim, Novoselov (CR1) 2007; 6
Rao (CR12) 2019; 567
Fallahazad (CR27) 2016; 116
Liu, Wu, Goddard (CR54) 2018; 140
Li (CR23) 2015; 10
Hu (CR44) 2016; 6
Bandurin (CR26) 2017; 12
Zasadzinski, Viswanathan, Madsen, Garnaes, Schwartz (CR55) 1994; 263
Hasan, Xu, Belopolski, Huang (CR5) 2017; 8
Mallet (CR52) 2012; 86
Coss (CR37) 2009; 95
Yu (CR43) 2016; 6
Du (CR19) 2017; 17
Qiu (CR21) 2018; 18
Y Liu (715_CR54) 2018; 140
W Wu (715_CR20) 2018; 47
715_CR39
G Qiu (715_CR21) 2018; 18
B Fallahazad (715_CR27) 2016; 116
715_CR32
Z Ren (715_CR40) 2010; 82
DS Sanchez (715_CR13) 2019; 567
K von Klitzing (715_CR15) 1971; 9
K von Klitzing (715_CR17) 1974; 15
BE Coss (715_CR37) 2009; 95
CH Wang (715_CR36) 2018; 18
J Xiong (715_CR42) 2012; 44
LA Agapito (715_CR9) 2013; 110
A Alexandradinata (715_CR48) 2018; 8
HCP Movva (715_CR28) 2017; 118
AK Geim (715_CR1) 2007; 6
SS Tsirkin (715_CR8) 2018; 97
P Mallet (715_CR52) 2012; 86
YB Zhang (715_CR3) 2005; 438
Z Wu (715_CR29) 2016; 7
J Hu (715_CR44) 2016; 6
S Berweger (715_CR33) 2019; 19
L Roth (715_CR46) 1966; 145
K Nakayama (715_CR7) 2017; 95
L Li (715_CR24) 2016; 11
CL Zhang (715_CR14) 2017; 96
R Pisoni (715_CR30) 2018; 121
MZ Hasan (715_CR5) 2017; 8
Y Ando (715_CR41) 2013; 82
Z Rao (715_CR12) 2019; 567
H Liu (715_CR34) 2014; 35
NP Armitage (715_CR4) 2018; 90
R Silbermann (715_CR16) 1975; 16
JS Dhillon (715_CR47) 1955; 248
715_CR50
X Ren (715_CR31) 2019; 19
KV Klitzing (715_CR38) 1980; 45
VP Gusynin (715_CR22) 2005; 95
C Şahin (715_CR10) 2018; 97
E Rotenberg (715_CR51) 2011; 7
G Chang (715_CR11) 2018; 17
Y Wang (715_CR18) 2018; 1
M Hirayama (715_CR6) 2015; 114
L Li (715_CR23) 2015; 10
JA Zasadzinski (715_CR55) 1994; 263
KS Novoselov (715_CR2) 2005; 438
Y Du (715_CR19) 2017; 17
J Yang (715_CR25) 2018; 18
Y Zhao (715_CR45) 2015; 5
S Xu (715_CR49) 2017; 118
H Shinno (715_CR53) 1973; 35
DJ Perello (715_CR35) 2015; 6
DA Bandurin (715_CR26) 2017; 12
W Yu (715_CR43) 2016; 6
References_xml – volume: 118
  start-page: 247701
  year: 2017
  ident: CR28
  article-title: Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe
  publication-title: Phys. Rev. Lett.
– volume: 97
  start-page: 035158
  year: 2018
  ident: CR8
  article-title: Gyrotropic effects in trigonal tellurium studied from first principles
  publication-title: Phys. Rev. B
– volume: 263
  start-page: 1726
  year: 1994
  end-page: 1733
  ident: CR55
  article-title: Langmuir-Blodgett films
  publication-title: Science
– volume: 7
  year: 2016
  ident: CR29
  article-title: Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides
  publication-title: Nat. Commun.
– volume: 118
  start-page: 067702
  year: 2017
  ident: CR49
  article-title: Odd-integer quantum hall states and giant spin susceptibility in p-type few-layer WSe
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 11027
  year: 2018
  ident: CR48
  article-title: Revealing the topology of Fermi-surface wave functions from magnetic quantum oscillations
  publication-title: Phys. Rev. X
– volume: 10
  start-page: 608
  year: 2015
  end-page: 613
  ident: CR23
  article-title: Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films
  publication-title: Nat. Nanotechnol.
– ident: CR39
– volume: 116
  start-page: 1
  year: 2016
  end-page: 5
  ident: CR27
  article-title: Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe : Landau level degeneracy, effective mass, and negative compressibility
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 2201
  year: 1971
  end-page: 2205
  ident: CR15
  article-title: Surface quantum states in tellurium
  publication-title: Solid State Commun.
– volume: 19
  start-page: 1289
  year: 2019
  end-page: 1294
  ident: CR33
  article-title: Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors
  publication-title: Nano Lett.
– volume: 567
  start-page: 500
  year: 2019
  end-page: 505
  ident: CR13
  article-title: Topological chiral crystals with helicoid-arc quantum states
  publication-title: Nature
– volume: 90
  start-page: 015001
  year: 2018
  ident: CR4
  article-title: Weyl and Dirac semimetals in three-dimensional solids
  publication-title: Rev. Mod. Phys.
– volume: 1
  start-page: 228
  year: 2018
  end-page: 236
  ident: CR18
  article-title: Field-effect transistors made from solution-grown two-dimensional tellurene
  publication-title: Nat. Electron.
– volume: 114
  start-page: 206401
  year: 2015
  ident: CR6
  article-title: Weyl node and spin texture in trigonal tellurium and selenium
  publication-title: Phys. Rev. Lett.
– ident: CR50
– volume: 82
  start-page: 241306
  year: 2010
  ident: CR40
  article-title: Large bulk resistivity and surface quantum oscillations in the topological insulator Bi Te Se
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 4738
  year: 2019
  end-page: 4744
  ident: CR31
  article-title: Gate-tuned insulator-metal transition in electrolyte-gated transistors based on tellurene
  publication-title: Nano Lett.
– volume: 248
  start-page: 1
  year: 1955
  end-page: 21
  ident: CR47
  article-title: The de Haas-van alphen effect III. Experiments at fields up to 32 KG
  publication-title: Philos. Trans. R. Soc. A
– volume: 6
  year: 2016
  ident: CR43
  article-title: Quantum oscillations at integer and fractional Landau level indices in single-crystalline ZrTe
  publication-title: Sci. Rep.
– ident: CR32
– volume: 6
  year: 2016
  ident: CR44
  article-title: π Berry phase and Zeeman splitting of Weyl semimetal TaP
  publication-title: Sci. Rep.
– volume: 35
  start-page: 525
  year: 1973
  end-page: 533
  ident: CR53
  article-title: Conduction band structure of tellurium
  publication-title: J. Phys. Soc. Jpn.
– volume: 97
  start-page: 205206
  year: 2018
  ident: CR10
  article-title: Pancharatnam-Berry phase and kinetic magnetoelectric effect in trigonal tellurium
  publication-title: Phys. Rev. B
– volume: 438
  start-page: 197
  year: 2005
  end-page: 200
  ident: CR2
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
– volume: 45
  start-page: 494
  year: 1980
  end-page: 497
  ident: CR38
  article-title: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
  publication-title: Phys. Rev. Lett.
– volume: 95
  start-page: 146801
  year: 2005
  ident: CR22
  article-title: Unconventional integer quantum Hall effect in graphene
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 3965
  year: 2017
  end-page: 3973
  ident: CR19
  article-title: One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport
  publication-title: Nano Lett.
– volume: 12
  start-page: 223
  year: 2017
  end-page: 227
  ident: CR26
  article-title: High electron mobility, quantum Hall effect and anomalous optical response in atomically thin Inse
  publication-title: Nat. Nanotechnol.
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: CR3
  article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene
  publication-title: Nature
– volume: 110
  start-page: 176401
  year: 2013
  ident: CR9
  article-title: Novel family of chiral-based topological insulators: elemental tellurium under strain
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 1721
  year: 1974
  end-page: 1725
  ident: CR17
  article-title: Magnetophonon oscillations in tellurium under hot carrier conditions
  publication-title: Solid State Commun.
– volume: 16
  start-page: 6
  year: 1975
  end-page: 9
  ident: CR16
  article-title: Surface quantum oscillations in accumulation and inversion layers on tellurium
  publication-title: Solid State Commun.
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: CR1
  article-title: The rise of graphene
  publication-title: Nat. Mater.
– volume: 18
  start-page: 229
  year: 2018
  end-page: 234
  ident: CR25
  article-title: Integer and fractional quantum Hall effect in ultra-high quality few-layer black phosphorus transistors
  publication-title: Nano Lett.
– volume: 44
  start-page: 917
  year: 2012
  end-page: 920
  ident: CR42
  article-title: Quantum oscillations in a topological insulator Bi Te Se with large bulk resistivity (6Ω∙cm)
  publication-title: Phys. E
– volume: 121
  start-page: 247701
  year: 2018
  ident: CR30
  article-title: Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS
  publication-title: Phys. Rev. Lett.
– volume: 95
  start-page: 222105
  year: 2009
  ident: CR37
  article-title: Near band edge Schottky barrier height modulation using high-κ dielectric dipole tuning mechanism
  publication-title: Appl. Phys. Lett.
– volume: 82
  start-page: 102001
  year: 2013
  ident: CR41
  article-title: Topological insulator materials
  publication-title: J. Phys. Soc. Jpn.
– volume: 35
  start-page: 795
  year: 2014
  end-page: 797
  ident: CR34
  article-title: The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights
  publication-title: IEEE Electron Device Lett.
– volume: 17
  start-page: 978
  year: 2018
  ident: CR11
  article-title: Topological quantum properties of chiral crystals
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0169-3
– volume: 7
  start-page: 8
  year: 2011
  end-page: 10
  ident: CR51
  article-title: Topological insulators: The dirt on topology
  publication-title: Nat. Phys.
– volume: 567
  start-page: 496
  year: 2019
  end-page: 499
  ident: CR12
  article-title: Observation of unconventional chiral fermions with long Fermi arcs in CoSi
  publication-title: Nature
– volume: 145
  start-page: 434
  year: 1966
  ident: CR46
  article-title: Semiclassical theory of magnetic energy levels and magnetic susceptibility of Bloch electrons
  publication-title: Phys. Rev.
– volume: 18
  start-page: 5760
  year: 2018
  end-page: 5767
  ident: CR21
  article-title: Quantum transport and band structure evolution under high magnetic field in few-layer tellurene
  publication-title: Nano Lett.
– volume: 5
  start-page: 031037
  year: 2015
  ident: CR45
  article-title: Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional dirac semimetal Cd As
  publication-title: Phys. Rev. X
– volume: 18
  start-page: 2822
  year: 2018
  end-page: 2827
  ident: CR36
  article-title: Unipolar n-type black phosphorus transistors with low work function contacts
  publication-title: Nano Lett.
– volume: 6
  year: 2015
  ident: CR35
  article-title: High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering
  publication-title: Nat. Commun.
– volume: 8
  start-page: 289
  year: 2017
  end-page: 309
  ident: CR5
  article-title: Discovery of Weyl fermion semimetals and topological Fermi arc states
  publication-title: Annu. Rev. Condens. Matter Phys.
– volume: 96
  start-page: 1
  year: 2017
  end-page: 10
  ident: CR14
  article-title: Ultraquantum magnetoresistance in the Kramers–Weyl semimetal candidate β-Ag Se
  publication-title: Phys. Rev. B
– volume: 140
  start-page: 550
  year: 2018
  end-page: 553
  ident: CR54
  article-title: Tellurium: fast electrical and atomic transport along the weak interaction direction
  publication-title: J. Am. Chem. Soc.
– volume: 95
  start-page: 125204
  year: 2017
  ident: CR7
  article-title: Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 045444
  year: 2012
  ident: CR52
  article-title: Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 593
  year: 2016
  end-page: 597
  ident: CR24
  article-title: Quantum hall effect in black phosphorus two-dimensional electron system
  publication-title: Nat. Nanotechnol.
– volume: 47
  start-page: 7203
  year: 2018
  end-page: 7212
  ident: CR20
  article-title: Tellurene: its physical properties, scalable nanomanufacturing, and device applications
  publication-title: Chem. Soc. Rev.
– ident: 715_CR50
  doi: 10.1103/PhysRevB.101.205414
– volume: 95
  start-page: 146801
  year: 2005
  ident: 715_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.146801
– volume: 7
  year: 2016
  ident: 715_CR29
  publication-title: Nat. Commun.
– volume: 140
  start-page: 550
  year: 2018
  ident: 715_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09964
– volume: 6
  start-page: 183
  year: 2007
  ident: 715_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 17
  start-page: 3965
  year: 2017
  ident: 715_CR19
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01717
– volume: 35
  start-page: 795
  year: 2014
  ident: 715_CR34
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2014.2323951
– volume: 90
  start-page: 015001
  year: 2018
  ident: 715_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015001
– ident: 715_CR39
– volume: 248
  start-page: 1
  year: 1955
  ident: 715_CR47
  publication-title: Philos. Trans. R. Soc. A
– volume: 45
  start-page: 494
  year: 1980
  ident: 715_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.494
– volume: 438
  start-page: 201
  year: 2005
  ident: 715_CR3
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 8
  start-page: 289
  year: 2017
  ident: 715_CR5
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031016-025225
– volume: 19
  start-page: 4738
  year: 2019
  ident: 715_CR31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01827
– volume: 7
  start-page: 8
  year: 2011
  ident: 715_CR51
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1869
– volume: 116
  start-page: 1
  year: 2016
  ident: 715_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.086601
– volume: 17
  start-page: 978
  year: 2018
  ident: 715_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0169-3
– volume: 110
  start-page: 176401
  year: 2013
  ident: 715_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.176401
– volume: 96
  start-page: 1
  year: 2017
  ident: 715_CR14
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 2201
  year: 1971
  ident: 715_CR15
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(71)90630-2
– volume: 6
  year: 2015
  ident: 715_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8809
– volume: 6
  year: 2016
  ident: 715_CR44
  publication-title: Sci. Rep.
– volume: 82
  start-page: 102001
  year: 2013
  ident: 715_CR41
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.82.102001
– volume: 11
  start-page: 593
  year: 2016
  ident: 715_CR24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.42
– volume: 5
  start-page: 031037
  year: 2015
  ident: 715_CR45
  publication-title: Phys. Rev. X
– volume: 438
  start-page: 197
  year: 2005
  ident: 715_CR2
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 47
  start-page: 7203
  year: 2018
  ident: 715_CR20
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00598B
– volume: 18
  start-page: 229
  year: 2018
  ident: 715_CR25
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03954
– volume: 35
  start-page: 525
  year: 1973
  ident: 715_CR53
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.35.525
– volume: 10
  start-page: 608
  year: 2015
  ident: 715_CR23
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.91
– volume: 118
  start-page: 247701
  year: 2017
  ident: 715_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.247701
– volume: 8
  start-page: 11027
  year: 2018
  ident: 715_CR48
  publication-title: Phys. Rev. X
– volume: 567
  start-page: 500
  year: 2019
  ident: 715_CR13
  publication-title: Nature
  doi: 10.1038/s41586-019-1037-2
– volume: 567
  start-page: 496
  year: 2019
  ident: 715_CR12
  publication-title: Nature
  doi: 10.1038/s41586-019-1031-8
– volume: 18
  start-page: 5760
  year: 2018
  ident: 715_CR21
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02368
– volume: 95
  start-page: 125204
  year: 2017
  ident: 715_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.125204
– volume: 6
  year: 2016
  ident: 715_CR43
  publication-title: Sci. Rep.
– volume: 86
  start-page: 045444
  year: 2012
  ident: 715_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.045444
– volume: 121
  start-page: 247701
  year: 2018
  ident: 715_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.247701
– volume: 118
  start-page: 067702
  year: 2017
  ident: 715_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.067702
– volume: 82
  start-page: 241306
  year: 2010
  ident: 715_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.241306
– volume: 15
  start-page: 1721
  year: 1974
  ident: 715_CR17
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(74)91220-4
– volume: 97
  start-page: 205206
  year: 2018
  ident: 715_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.205206
– volume: 97
  start-page: 035158
  year: 2018
  ident: 715_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.035158
– volume: 19
  start-page: 1289
  year: 2019
  ident: 715_CR33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04865
– volume: 16
  start-page: 6
  year: 1975
  ident: 715_CR16
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(75)90002-2
– volume: 1
  start-page: 228
  year: 2018
  ident: 715_CR18
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0058-4
– volume: 12
  start-page: 223
  year: 2017
  ident: 715_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.242
– volume: 95
  start-page: 222105
  year: 2009
  ident: 715_CR37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3263719
– volume: 145
  start-page: 434
  year: 1966
  ident: 715_CR46
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.145.434
– ident: 715_CR32
  doi: 10.1109/DRC.2018.8442253
– volume: 44
  start-page: 917
  year: 2012
  ident: 715_CR42
  publication-title: Phys. E
  doi: 10.1016/j.physe.2011.09.011
– volume: 114
  start-page: 206401
  year: 2015
  ident: 715_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.206401
– volume: 18
  start-page: 2822
  year: 2018
  ident: 715_CR36
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05192
– volume: 263
  start-page: 1726
  year: 1994
  ident: 715_CR55
  publication-title: Science
  doi: 10.1126/science.8134836
SSID ssj0052924
Score 2.607499
Snippet Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 585
SubjectTerms 639/301/1005/1007
639/301/119/2794
639/925/357/1018
Chemistry and Materials Science
Conduction
Conduction bands
Crystal structure
Electrons
Elementary excitations
Energy gap
Fermions
Hydrothermal crystal growth
Magnetic fields
Magnetic properties
Materials Science
Metalloids
N-type semiconductors
Nanotechnology
Nanotechnology and Microengineering
Nodes
Quantum Hall effect
Quantum mechanics
Relativistic effects
Semiconductors
Tellurium
Topology
Title Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene
URI https://link.springer.com/article/10.1038/s41565-020-0715-4
https://www.ncbi.nlm.nih.gov/pubmed/32601448
https://www.proquest.com/docview/2421630817
https://www.proquest.com/docview/2475047393
https://www.proquest.com/docview/2419084705
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-65GV7GGv35S0tGuxpQ1S25K-n0o2modCwjZXlzejjAoXM7pb4Yf_97mI73Sjti0FIMuJO0t3p7n4H8D6oEBvUHDYYk4ESCiddoZw0GLQvsUxswgnOl_NsdmUuFumif3Bb92GVw524vahD4_mN_Jhdl5kmAZaf3PySXDWKvat9CY1HMGboMg7pyhc7gytNyq6obW4KSaZYPng1dXG8ZsOFc5MVp_Ck0vwvl-4om3ccpVv5M30GT3vFUZx2nN6HPawP4Mk_cILP4fxrS3Rqf4qZXa1EF6khmqX4gX9WYslRL7TFxHUtaskvr2LNgfFNzYivNF9wPknLCJcv4Gp69v3zTPaFEqQ3WbaR6ENsA2keDl2OpBN5S3ZKmXlfGjTU0FottSdVBZUPKfHCFZjEwS2tRwbkewmjuqnxNYgYyaRSiCbz2litndFWpUqFUFgs8zICNZCp8j2KOBezWFVbb7Yuqo6yFVG2YspWJoIPuyk3HYTGQ4MnA-2r_jStq1ve39PNGPUM7RfBu103HRP2fdgam5bHkOZDklilEbzqWLpbjGZYNTJTI_g48Pj25_eu9M3DK30Lj5Nud0kVT2C0-d3iIekvG3e03aT0LabnRzD-dDb_8u0v1z3sDQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOQAHxJuBAkGCCyhqZpJ5HRBCwHZLHxJSK3pL8_BKSMtMYXeE-qf4jdg7O1tQ1d56HGUSRbYT27H9GeBVVDE1qDltMCUHJVZe-kp5aTDqUGOduYwLnPf2i_Gh-XKUH63Bn6EWhtMqhztxcVHHNvAb-SaHLgtNCqx8f_JTctcojq4OLTR6sdjB09_kss3ebX8i_r7OstHng49juewqIIMpirnEEFMXSU179CWSAREcGfV1EUJt0NAHefgTHUivowoxp437CrM0-okLyOh1tO41uG60rvlEVaOt4ebPs7pvoluaSpLrVw5RVF1tzthR4lpoxSVDuTT_68Fzxu25wOxC343uwO2loSo-9JJ1F9awuQe3_oEvvA9bXzviS_dDjN10KvrMENFOxDc8nYoJZ9mQSIvvjWgkv_SKGSfitw0jzNJ8wfUrHSNqPoDDKyHhQ1hv2gYfg0iRXDiFaIqgjdPaG-1UrlSMlcO6rBNQA5lsWKKWc_OMqV1Ez3Vle8paoqxlylqTwJvVlJMesuOynzcG2tvl6Z3ZM1m7YJgx8RlKMIGXq2E6lhxrcQ22Hf9DlhZpfpUn8Khn6WozmmHcyC1O4O3A47PFL9zpk8t3-gJujA_2du3u9v7OU7iZ9ZImVboB6_NfHT4j22nuny8EVsDxVZ-Qv0pgKHY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBdEH8du0VVfQF2W5TXbz9SAi1vNqtShYvLc0uzsB4Zq0vQvSf61_nTOX5KqU9q2PIdmwmY_MzM7MbwBeeeVDg5rLBkMKUHxmpc2UlQa9djnmURlxg_O3vWSyb75M4-kanA29MFxWOfwTlz9q3zg-Ix9x6jLRZMDSUdWXRXzfHr8_OpY8QYozrcM4jU5EdvH0D4Vv83c728Tr11E0_vTz40T2EwakM0mykOh8WHoy2RZtiuRMuJIc_DxxLjdo6IKi_Uo7svGonI_pI2yGUehtVTpkJDt67w24meo4ZB1Lp6tgL47ybqBuajJJYWA6ZFR1Nppz0MR90Yrbh2Jp_reJFxzdC0nape0b34O7vdMqPnRSdh_WsH4Ad_6BMnwIn3-0xKP2UEzK2Ux0VSKiqcQvPJ2JiituSLzF71rUkk99xZyL8pua0WZpveBelpbRNR_B_rWQ8DGs102NT0GESOGcQjSJ06bU2hpdqlgp77MS8zQPQA1kKlyPYM6DNGbFMpOus6KjbEGULZiyhQngzWrJUQffcdXDWwPti16T58W53F1ym_HxGVYwgJer26SinHcpa2xafoa8LvICVBzAk46lq81ohnSjEDmAtwOPz19-6U43rt7pC7hFulF83dnb3YTbUSdoUoVbsL44afEZuVEL-3wprwIOrltB_gIGCiyj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Hall+effect+of+Weyl+fermions+in+n-type+semiconducting+tellurene&rft.jtitle=Nature+nanotechnology&rft.au=Qiu%2C+Gang&rft.au=Niu%2C+Chang&rft.au=Wang%2C+Yixiu&rft.au=Si%2C+Mengwei&rft.date=2020-07-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=7&rft.spage=585&rft.epage=591&rft_id=info:doi/10.1038%2Fs41565-020-0715-4&rft.externalDocID=10_1038_s41565_020_0715_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon