Microglia sense and suppress epileptic neuronal hyperexcitability

Microglia are the resident immune cells of the central nervous system, undertaking surveillance role and reacting to brain homeostasis and neurological diseases. Recent studies indicate that microglia modulate epilepsy-induced neuronal activities, however, the mechanisms underlying microglia-neuron...

Full description

Saved in:
Bibliographic Details
Published inPharmacological research Vol. 195; p. 106881
Main Authors Hu, Yang, Yao, Yuanyuan, Qi, Honggang, Yang, Jiurong, Zhang, Canyu, Zhang, Aifeng, Liu, Xiufang, Zhang, Chenchen, Gan, Guangming, Zhu, Xinjian
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.09.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microglia are the resident immune cells of the central nervous system, undertaking surveillance role and reacting to brain homeostasis and neurological diseases. Recent studies indicate that microglia modulate epilepsy-induced neuronal activities, however, the mechanisms underlying microglia-neuron communication in epilepsy are still unclear. Here we report that epileptic neuronal hyperexcitability activates microglia and drives microglial ATP/ADP hydrolyzing ectoenzyme CD39 (encoded by Entpd1) expression via recruiting the cAMP responsive element binding protein (CREB)-regulated transcription coactivator-1 (CRTC1) from cytoplasm to the nucleus and binding to CREB. Activated microglia in turn suppress epileptic neuronal hyperexcitability in a CD39 dependent manner. Disrupting microglial CREB/CRTC1 signaling, however, decreases CD39 expression and diminishes the inhibitory effect of microglia on epileptic neuronal hyperexcitability. Overall, our findings reveal CD39-dependent control of epileptic neuronal hyperexcitability by microglia is through an excitation-transcription coupling mechanism. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1043-6618
1096-1186
DOI:10.1016/j.phrs.2023.106881