Broadcast Court-Net Sports Video Analysis Using Fast 3-D Camera Modeling

This paper addresses the automatic analysis of court-net sports video content. We extract information about the players, the playing-field in a bottom-up way until we reach scene-level semantic concepts. Each part of our framework is general, so that the system is applicable to several kinds of spor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 18; no. 11; pp. 1628 - 1638
Main Authors Jungong Han, Farin, D., de With, P.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper addresses the automatic analysis of court-net sports video content. We extract information about the players, the playing-field in a bottom-up way until we reach scene-level semantic concepts. Each part of our framework is general, so that the system is applicable to several kinds of sports. A central point in our framework is a camera calibration module that relates the a-priori information of the geometric layout in the form of a court model to the input image. Exploiting this information, several novel algorithms are proposed, including playing-frame detection, players segmentation and tracking. To address the player-occlusion problem, we model the contour map of the player silhouettes using a nonlinear regression algorithm, which enables to locate the players during the occlusions caused by players in the same team. Additionally, a Bayesian-based classifier helps to recognize predefined key events, where the input is a number of real-world visual features. We illustrate the performance and efficiency of the proposed system by evaluating it for a variety of sports videos containing badminton, tennis and volleyball, and we show that our algorithm can operate with more than 91% feature detection accuracy and 90% event detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2008.2005611