Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials

Abstract Cobalt–chromium particles and ions can induce indirect DNA damage and chromosome aberrations in human cells on the other side of a cellular barrier in tissue culture. This occurs by intercellular signalling across the barrier. We now show that the threshold for this effect depends on the me...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 31; no. 16; pp. 4477 - 4483
Main Authors Parry, Michael C, Bhabra, Gevdeep, Sood, Aman, Machado, Filipa, Cartwright, Laura, Saunders, Margaret, Ingham, E, Newson, R, Blom, Ashley W, Case, Charles P
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Cobalt–chromium particles and ions can induce indirect DNA damage and chromosome aberrations in human cells on the other side of a cellular barrier in tissue culture. This occurs by intercellular signalling across the barrier. We now show that the threshold for this effect depends on the metal form and the particle composition. Ionic cobalt and chromium induced single strand breaks at concentrations equivalent to those found in the blood of patients with well functioning metal on metal hip prostheses. However, they only caused double strand breaks if the chromium was present as chromium (VI), and did not induce chromosome aberrations. Nanoparticles of cobalt–chromium alloy caused DNA double strand breaks and chromosome aberrations, of which the majority were tetraploidy. Ceramic nanoparticles induced only single strand breaks and/or alkaline labile sites when indirectly exposed to human fibroblasts. The assessment of reproductive risk from maternal exposure to biomaterials is not yet possible with epidemiology. Whilst the barrier model used here differs from the in vivo situation in several respects, it may be useful as a framework to evaluate biomaterial induced damage across physiological barriers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2010.02.038