Quantitation of SARS-CoV-2 neutralizing antibodies with a virus-free, authentic test
Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization te...
Saved in:
Published in | PNAS nexus Vol. 1; no. 2 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive enzyme immunoassays or use viral vectors with the spike protein as the single structural component of SARS-CoV-2. To overcome these obstacles, we developed a virus-free, safe and very fast (4.5 h)
diagnostic test based on engineered yet authentic SARS-CoV-2 virus-like-particles (VLPs). They share all features of the original SARS-CoV-2 but lack the viral RNA genome and thus are non-infectious. NAbs induced by infection or vaccination, but also potentially neutralizing monoclonal antibodies can be reliably quantified and assessed with ease and within hours with our test, because they interfere and block the ACE2-mediated uptake of VLPs by recipient cells. Results from the VLP neutralization test (VLPNT) showed excellent specificity and sensitivity and correlated very well with a cVNT using fully infectious SARS-CoV-2. The results also demonstrated the reduced neutralizing capacity of COVID-19 vaccinee sera against variants of concern of SARS-CoV-2 including omicron B.1.1.529, BA.1. |
---|---|
Bibliography: | JR performed most of the experiments; DP supported by WH provided substantial additional experimental work; MA and OK provided the SARS-CoV-2 virus stock; PR, OK, JH, CS, and MB provided the 63 clinical COVID-19 samples; VK and SB performed cVNTs; AB performed cryo-EM; JR and WH wrote the paper; JR, RZ and WH designed the scientific concept and the experimental realization. Author contributions |
ISSN: | 2752-6542 2752-6542 |
DOI: | 10.1093/pnasnexus/pgac045 |