Sepsis Mortality Prediction Using Wearable Monitoring in Low-Middle Income Countries

Sepsis is associated with high mortality-particularly in low-middle income countries (LMICs). Critical care management of sepsis is challenging in LMICs due to the lack of care providers and the high cost of bedside monitors. Recent advances in wearable sensor technology and machine learning (ML) mo...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 10; p. 3866
Main Authors Ghiasi, Shadi, Zhu, Tingting, Lu, Ping, Hagenah, Jannis, Khanh, Phan Nguyen Quoc, Hao, Nguyen Van, Vital Consortium, Thwaites, Louise, Clifton, David A
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.05.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sepsis is associated with high mortality-particularly in low-middle income countries (LMICs). Critical care management of sepsis is challenging in LMICs due to the lack of care providers and the high cost of bedside monitors. Recent advances in wearable sensor technology and machine learning (ML) models in healthcare promise to deliver new ways of digital monitoring integrated with automated decision systems to reduce the mortality risk in sepsis. In this study, firstly, we aim to assess the feasibility of using wearable sensors instead of traditional bedside monitors in the sepsis care management of hospital admitted patients, and secondly, to introduce automated prediction models for the mortality prediction of sepsis patients. To this end, we continuously monitored 50 sepsis patients for nearly 24 h after their admission to the Hospital for Tropical Diseases in Vietnam. We then compared the performance and interpretability of state-of-the-art ML models for the task of mortality prediction of sepsis using the heart rate variability (HRV) signal from wearable sensors and vital signs from bedside monitors. Our results show that all ML models trained on wearable data outperformed ML models trained on data gathered from the bedside monitors for the task of mortality prediction with the highest performance (area under the precision recall curve = 0.83) achieved using time-varying features of HRV and recurrent neural networks. Our results demonstrate that the integration of automated ML prediction models with wearable technology is well suited for helping clinicians who manage sepsis patients in LMICs to reduce the mortality risk of sepsis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The members of Vital Consortium are listed in Acknowledgments.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22103866