Improvement of Stability and Power Factor in PCM Controlled Boost PFC Converter With Hybrid Dynamic Compensation
Traditional slope compensation (SC) method is an effective way to control fast-scale instabilities present in peak current mode (PCM) controlled boost PFC converters. However, with the SC method, envelope of inductor current deviates from a desired sinusoid especially near the zero crossings, which...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 62; no. 1; pp. 320 - 328 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Traditional slope compensation (SC) method is an effective way to control fast-scale instabilities present in peak current mode (PCM) controlled boost PFC converters. However, with the SC method, envelope of inductor current deviates from a desired sinusoid especially near the zero crossings, which causes the system power factor to reduce to values lower than what is possible without compensation. To tackle this problem we propose a hybrid dynamic compensation (HDC) scheme, which incorporates a combination of zero-perturbation dynamic compensation (ZPDC) and ripple compensation. The proposed HDC scheme can suppress the fast-scale instabilities and also ensure average inductor current tracks a desired sinusoidal reference which is not possible with the ZPDC scheme alone where only the peak inductor current can track a desired sinusoidal signal. Furthermore, with the proposed HDC scheme the total harmonic distortion (THD) and power factor (PF) are improved in comparison to the SC and ZPDC schemes as well as to the case without compensation. Moreover, operating range of a control parameter is determined analytically subject to some assumptions. Extensive simulation and experimental results are provided to validate the theoretical analysis and the feasibility of the proposed HDC scheme. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2014.2346111 |