In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters
Catheter-associated urinary tract infections (CAUTIs) are among the most common hospital-acquired infections, leading to increased morbidity and mortality. A major reason for this is that urinary catheters are not yet capable of preventing CAUTIs. To develop an anti-infective urinary catheter. An ef...
Saved in:
Published in | The Journal of hospital infection Vol. 103; no. 1; pp. 55 - 63 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Catheter-associated urinary tract infections (CAUTIs) are among the most common hospital-acquired infections, leading to increased morbidity and mortality. A major reason for this is that urinary catheters are not yet capable of preventing CAUTIs.
To develop an anti-infective urinary catheter.
An efficient silver-polytetrafluoroethylene (Ag-PTFE) nanocomposite coating was deposited on whole silicone catheters, and two in-vitro bladder models were designed to test antibacterial (against Escherichia coli) and anti-encrustation (against Proteus mirabilis) performances. Each model was challenged with two different concentrations of bacterial suspension.
Compared with uncoated catheters, coated catheters significantly inhibited bacterial migration and biofilm formation on the external catheter surfaces. The time to develop bacteriuria was an average of 1.8 days vs 4 days and 6 days vs 41 days when the urethral meatus was infected with 106 and 102 cells/mL, respectively. For anti-encrustation tests, the coated catheter significantly resisted encrustation, although it did not strongly inhibit the increases in bacterial density and urinary pH. The time to blockage, which was found to be independent of the initial bacterial concentration in the bladder, was extended from 36.2±1.1 h (uncoated) to 89.5±3.54 h (coated) following bacterial contamination with 103 cells/mL in the bladder. Moreover, the coated catheter exhibited excellent biocompatibility with L929 fibroblast cells.
Ag-PTFE coated Foley catheters should undergo further clinical trials to determine their ability to prevent CAUTIs during catheterization. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0195-6701 1532-2939 |
DOI: | 10.1016/j.jhin.2019.02.012 |