Preparation and Characterization of Cellulose Ether Liposomes for the Inhibition of Prion Formation in Prion-Infected Cells

Prion accumulation in the brain and lymphoreticular system causes fatal neurodegenerative diseases. Our previous study revealed that cellulose ethers (CE) have anti-prion activities in vivo and in prion-infected cells when administered at high doses. This study aims to improve the bioavailability of...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmaceutical sciences Vol. 108; no. 8; pp. 2814 - 2820
Main Authors Nishizawa, Keiko, Teruya, Kenta, Oguma, Ayumi, Sakasegawa, Yuji, Schätzl, Hermann, Gilch, Sabine, Doh-ura, Katsumi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Prion accumulation in the brain and lymphoreticular system causes fatal neurodegenerative diseases. Our previous study revealed that cellulose ethers (CE) have anti-prion activities in vivo and in prion-infected cells when administered at high doses. This study aims to improve the bioavailability of a representative CE using a liposomal formulation and characterized CE-loaded liposomes in cultured cells. The liposomal formulation reduced the EC50 dose of CE by <1/200-fold in prion-infected cells. Compared to empty liposomes, CE-loaded liposomes were taken up much more highly by prion-infected cells and less by macrophage-like cells. Phosphatidylserine modification reduced the uptake of CE-loaded liposomes in prion-infected cells and did not change the anti-prion activity, whereas increased the uptake in macrophage-like cells. Polyethylene glycol modification reduced the uptake of CE-loaded liposomes in both types of cells and reduced the anti-prion activity in prion-infected cells. These results suggest that a liposomal formulation of CE is more practical than unformulated CE and showed that the CE-loaded liposome uptake levels in prion-infected cells were not associated with anti-prion activity. Although further improvement of the stealth function against phagocytic cells is needed, the liposomal formulation is useful to improve CE efficacy and elucidate the mechanism of CE action.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3549
1520-6017
DOI:10.1016/j.xphs.2019.03.025