Power Synthesis at 110-GHz Frequency Based on Discrete Sources
Terahertz technology is one of the research fronts in the microwave society. Among many technical challenges, achieving high-power terahertz radiation has been attracting many efforts. In this paper, we investigate the possibility of power synthesis at low-end frequencies of the terahertz gap based...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 63; no. 5; pp. 1633 - 1644 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Terahertz technology is one of the research fronts in the microwave society. Among many technical challenges, achieving high-power terahertz radiation has been attracting many efforts. In this paper, we investigate the possibility of power synthesis at low-end frequencies of the terahertz gap based on discrete sources. We show that by applying precision digital phase control, such a power synthesis can be achieved, overcoming the difficulty of phase alignment at these frequencies. For demonstration, we implement a 110-GHz prototype system employing solid-state impact avalanche and transit time diodes. Using a simulation- and measurement-based design methodology, the impedance matching of the designed cavity is able to be simultaneously obtained at both the RF bias and the 110-GHz frequency without using any absorbing material. Detailed design, simulation, and measurement of the prototype are introduced and the experimental results comply well with analytical expectations. Analysis shows that with increased wide digital bit width, the proposed approach is able to provide sufficient phase control precision, making it possible to be used in the power synthesis applications at low terahertz frequencies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2015.2417856 |