Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis
Biotechnology, separation science, and clinical research are impacted by microfluidic devices. Separation and manipulation of bioparticles such as DNA, protein and viruses are performed on these platforms. Microfluidic systems provide many attractive features, including small sample size, rapid dete...
Saved in:
Published in | Analyst (London) Vol. 141; no. 6; pp. 1997 - 28 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Biotechnology, separation science, and clinical research are impacted by microfluidic devices. Separation and manipulation of bioparticles such as DNA, protein and viruses are performed on these platforms. Microfluidic systems provide many attractive features, including small sample size, rapid detection, high sensitivity and short processing time. Dielectrophoresis (DEP) and electrophoresis are especially well suited to microscale bioparticle control and have been demonstrated in many formats. In this work, an optimized gradient insulator-based DEP device was utilized for concentration of Sindbis virus, an animal virus with a diameter of 68 nm. Within only a few seconds, the concentration of Sindbis virus can be increased by two to six times in the channel under easily accessible voltages as low as about 70 V. Compared with traditional diagnostic methods used in virology, DEP-based microfluidics can enable faster isolation, detection and concentration of viruses in a single step within a short time.
Rapid concentration of Sindbis virus using optimized gradient insulator-based Dielectrophoresis (i-gDEP). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/c5an02430g |