Protein Kinase C-dependent Ubiquitination and Clathrin-mediated Endocytosis of the Cationic Amino Acid Transporter CAT-1

Cationic amino acid transporter 1 (CAT-1) is responsible for the bulk of the uptake of cationic amino acids in most mammalian cells. Activation of protein kinase C (PKC) leads to down-regulation of the cell surface CAT-1. To examine the mechanisms of PKC-induced down-regulation of CAT-1, a functiona...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 286; no. 10; pp. 8697 - 8706
Main Authors Vina-Vilaseca, Arnau, Bender-Sigel, Julia, Sorkina, Tatiana, Closs, Ellen Ildicho, Sorkin, Alexander
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.03.2011
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cationic amino acid transporter 1 (CAT-1) is responsible for the bulk of the uptake of cationic amino acids in most mammalian cells. Activation of protein kinase C (PKC) leads to down-regulation of the cell surface CAT-1. To examine the mechanisms of PKC-induced down-regulation of CAT-1, a functional mutant of CAT-1 (CAT-1-HA-GFP) was generated in which a hemagglutinin antigen (HA) epitope tag was introduced into the second extracellular loop and GFP was attached to the carboxyl terminus. CAT-1-HA-GFP was stably expressed in porcine aorthic endothelial and human epithelial kidney (HEK) 293 cells. Using the HA antibody internalization assay we have demonstrated that PKC-dependent endocytosis was strongly inhibited by siRNA depletion of clathrin heavy chain, indicating that CAT-1-HA-GFP internalization requires clathrin-coated pits. Internalized CAT-1-HA-GFP was accumulated in early, recycling, and late endosomes. PKC activation also resulted in ubiquitination of CAT-1. CAT-1 ubiquitination and endocytosis in phorbol ester-stimulated porcine aorthic endothelial and HEK293 cells were inhibited by siRNA knockdown of NEDD4-2 and NEDD4-1 E3 ubiquitin ligases, respectively. In contrast, ubiquitination and endocytosis of the dopamine transporter was dependent on NEDD4-2 in all cell types tested. Altogether, our data suggest that ubiquitination mediated by NEDD4-2 or NEDD4-1 leading to clathrin-mediated endocytosis is the common mode of regulation of various transporter proteins by PKC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.186858