Modelling organelle transport after traumatic axonal injury

This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 18; no. 6; pp. 583 - 591
Main Authors Kuznetsov, I.A., Kuznetsov, A.V.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 26.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux.
AbstractList This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux.
This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux.This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux.
Author Kuznetsov, I.A.
Kuznetsov, A.V.
Author_xml – sequence: 1
  givenname: I.A.
  surname: Kuznetsov
  fullname: Kuznetsov, I.A.
  organization: Department of Biomedical Engineering, Johns Hopkins University
– sequence: 2
  givenname: A.V.
  surname: Kuznetsov
  fullname: Kuznetsov, A.V.
  email: avkuznet@ncsu.edu
  organization: Department of Mechanical and Aerospace Engineering, North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23947620$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKxDAUhoMo3t9ApEs3HXNPqwsR8QaKG12HNBeJtMmYtOi8vRlGXbhQVzmB7z8c_m8HrIcYLAAHCM4QbOAxgpixhuIZhojMGgwFRmtgG1HB6wazdr3MBamXzBbYyfkFQtighm6CLUzagmG4DU7vo7F978NzFdOzCmW21ZhUyPOYxkq50ablfxrU6HWl3mNQfeXDy5QWe2DDqT7b_c93FzxdXT5e3NR3D9e3F-d3taacjzU3nVCcKeicah2xDBtCmek6x1GLGDWutYQpIjrDGROdYrqBQplWa0c7BMkuOFrtnaf4Otk8ysFnXS4t58YpS8SpgKUEKv6BYgEFaQUv6OEnOnWDNXKe_KDSQn51UwC6AnSKOSfrvhEE5VKB_FIglwrkSkGJnfyIaT-W8mIoNfr-r_DZKuyDi2lQbzH1Ro5q0cfkihXtsyS_bvgAhO-d2w
CitedBy_id crossref_primary_10_1002_cnm_3523
crossref_primary_10_1016_j_tins_2016_10_007
Cites_doi 10.1096/fj.09-142844
10.1073/pnas.092504999
10.1097/00001199-200307000-00003
10.1523/JNEUROSCI.14-05-02818.1994
10.1529/biophysj.106.097881
10.1371/journal.pone.0022899
10.1080/10255840903505154
10.1038/nature03528
10.1038/nrn2631
10.1007/s10867-010-9191-7
10.1038/35036345
10.1038/ncb1498
10.1017/CBO9780511616938
10.1016/j.expneurol.2008.04.025
10.1016/j.cub.2007.04.025
10.1038/71338
10.1016/j.neulet.2011.01.018
10.1091/mbc.10.11.3717
10.1088/1478-3975/6/4/046002
10.1016/j.expneurol.2009.07.014
10.1111/j.1460-9568.1997.tb01510.x
10.1016/j.neuroscience.2009.05.038
10.1371/journal.pone.0006378
10.1038/380451a0
10.1016/j.neuron.2012.11.021
10.1016/S0006-3495(01)75994-2
10.15620/cdc.5571
10.1177/107385840000600611
10.1016/S0079-6123(06)61004-2
10.1097/00001199-199912000-00009
10.1073/pnas.0508511103
10.1016/j.bpj.2010.11.047
10.1242/jcs.110.21.2635
10.1083/jcb.201108111
10.1073/pnas.0406598101
10.1016/j.bpj.2011.11.4024
10.1016/j.expneurol.2011.10.030
ContentType Journal Article
Copyright 2013 Taylor & Francis 2013
Copyright_xml – notice: 2013 Taylor & Francis 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1080/10255842.2013.820721
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-8259
EndPage 591
ExternalDocumentID 23947620
10_1080_10255842_2013_820721
820721
Genre Article
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
53G
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
1TA
ACTTO
ADUMR
AFBWG
AFION
AGVKY
AGWUF
ALRRR
BWMZZ
CAG
CGR
COF
CUY
CVF
CYRSC
DAOYK
ECM
EIF
LJTGL
NPM
OPCYK
TASJS
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c466t-6db7a65a0ffa9f3e52d345dbbf619154df9e35a37bd6557ba5c807ad9ccf4b103
ISSN 1025-5842
1476-8259
IngestDate Sun Aug 24 03:09:47 EDT 2025
Fri Jul 11 06:47:41 EDT 2025
Mon Jul 21 06:03:59 EDT 2025
Tue Jul 01 03:32:04 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Wed Dec 25 09:03:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fast axonal transport
traumatic brain injury
microtubules
intracellular organelles
molecular motors
neurons
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-6db7a65a0ffa9f3e52d345dbbf619154df9e35a37bd6557ba5c807ad9ccf4b103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23947620
PQID 1627073976
PQPubID 23479
PageCount 9
ParticipantIDs informaworld_taylorfrancis_310_1080_10255842_2013_820721
pubmed_primary_23947620
proquest_miscellaneous_1647001347
crossref_primary_10_1080_10255842_2013_820721
crossref_citationtrail_10_1080_10255842_2013_820721
proquest_miscellaneous_1627073976
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-26
PublicationDateYYYYMMDD 2015-04-26
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-26
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Computer methods in biomechanics and biomedical engineering
PublicationTitleAlternate Comput Methods Biomech Biomed Engin
PublicationYear 2015
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0033
Vorobjev I (cit0035) 1997; 110
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
Yu WQ (cit0037) 1994; 14
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0036
cit0022
cit0001
cit0023
cit0020
cit0021
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0030
  doi: 10.1096/fj.09-142844
– ident: cit0034
  doi: 10.1073/pnas.092504999
– ident: cit0027
  doi: 10.1097/00001199-200307000-00003
– volume: 14
  start-page: 2818
  year: 1994
  ident: cit0037
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.14-05-02818.1994
– ident: cit0001
  doi: 10.1529/biophysj.106.097881
– ident: cit0010
  doi: 10.1371/journal.pone.0022899
– ident: cit0016
  doi: 10.1080/10255840903505154
– ident: cit0003
  doi: 10.1038/nature03528
– ident: cit0004
  doi: 10.1038/nrn2631
– ident: cit0017
  doi: 10.1007/s10867-010-9191-7
– ident: cit0024
  doi: 10.1038/35036345
– ident: cit0012
  doi: 10.1038/ncb1498
– ident: cit0005
  doi: 10.1017/CBO9780511616938
– ident: cit0013
  doi: 10.1016/j.expneurol.2008.04.025
– ident: cit0009
  doi: 10.1016/j.cub.2007.04.025
– ident: cit0015
  doi: 10.1038/71338
– ident: cit0020
  doi: 10.1016/j.neulet.2011.01.018
– ident: cit0021
  doi: 10.1091/mbc.10.11.3717
– ident: cit0011
  doi: 10.1088/1478-3975/6/4/046002
– ident: cit0014
  doi: 10.1016/j.expneurol.2009.07.014
– ident: cit0028
  doi: 10.1111/j.1460-9568.1997.tb01510.x
– ident: cit0018
  doi: 10.1016/j.neuroscience.2009.05.038
– ident: cit0023
  doi: 10.1371/journal.pone.0006378
– ident: cit0033
  doi: 10.1038/380451a0
– ident: cit0002
  doi: 10.1016/j.neuron.2012.11.021
– ident: cit0025
  doi: 10.1016/S0006-3495(01)75994-2
– ident: cit0008
  doi: 10.15620/cdc.5571
– ident: cit0026
  doi: 10.1177/107385840000600611
– ident: cit0007
  doi: 10.1016/S0079-6123(06)61004-2
– ident: cit0031
  doi: 10.1097/00001199-199912000-00009
– ident: cit0032
  doi: 10.1073/pnas.0508511103
– ident: cit0006
  doi: 10.1016/j.bpj.2010.11.047
– volume: 110
  start-page: 2635
  year: 1997
  ident: cit0035
  publication-title: J Cell Sci.
  doi: 10.1242/jcs.110.21.2635
– ident: cit0036
  doi: 10.1083/jcb.201108111
– ident: cit0019
  doi: 10.1073/pnas.0406598101
– ident: cit0022
  doi: 10.1016/j.bpj.2011.11.4024
– ident: cit0029
  doi: 10.1016/j.expneurol.2011.10.030
SSID ssj0008184
Score 2.0408318
Snippet This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 583
SubjectTerms Animals
Axons - metabolism
Axons - physiology
Brain Injuries - physiopathology
Computer Simulation
Diffusion
fast axonal transport
Humans
intracellular organelles
microtubules
Microtubules - metabolism
Models, Neurological
molecular motors
neurons
Organelles - metabolism
traumatic brain injury
Title Modelling organelle transport after traumatic axonal injury
URI https://www.tandfonline.com/doi/abs/10.1080/10255842.2013.820721
https://www.ncbi.nlm.nih.gov/pubmed/23947620
https://www.proquest.com/docview/1627073976
https://www.proquest.com/docview/1647001347
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF9qD8GXw2_rFxF8zZnsZxZBKHpHkfN8abH4smSzu6BIKl566P31zn4kvWo9T19CumSzYWY6OzM7Mz-Enjvfq9CBW1JpQ3PaSJzLoqpziqkrpbawK_rQwLsTPlvQt0u2HI1eXchaWnf6oDnfWVfyP1yFMeCrr5L9B84OL4UBuAf-whU4DNcr8dgDmcWe2gGcycfgPeZD7Fae4L_h9zq1Zf0eon6f2s_r7TroHtkhwUmHDNlQlu-rgvsuzrFOP7DUbnoYbk6Czlvbna7Ogs6Z7hyepoTaFGMomT8uiYXsSS160FswVaLetHGMCp6Dfyl369JfFCOLcDVpj2URoes39R3zHf1qfjGfeEcOwEQRsYh6u1v2yXt1tDg-VvPD5fwa2sPgJuAx2pvO3nz8MOzFYI6EvIL--_viyap4sWuVLeNkq3Xtnx2QYIjMb6L95EFk0ygOt9DItrfR9Ygp-uMOejkIRTYIRTYIRRaEIhuEIotCkUWhuIsWR4fz17M8IWTkDeW8y7nRouasLpyrpSOWYUMoM1o78IvBODZOWsJqIrThjAlds6YqRG1k0ziqy4LcQ-N21doHKLO4wTUW0pS8ofAWXRpTipoxg52QVTlBpCeNalL7eI9i8kWVqctsT1DlCaoiQScoH2Z9je1T_vJ8dZHqqgthKxcxZhS5fOqznkMKVKQ_9wIar9anquRY-ANpwS97hvoMDELFBN2P7B0-GBMJso6Lh1eY_Qjd2PyBHqNx921tn4DZ2umnSTZ_AmIkk5U
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFA5iEX2x9Va3tjqCr7NM7hP6VKSy6u4-KfgWcpmAF3aLzoDtr29OZmZRQQv2aRgmCZOTyzk55-T7EDoKgFUY4rGktJ7lzCmSq6I0OSMsYGWrqBXBNTCZitElO7vifTbhQ5dWCWfo0AJFpL0aFjc4o_uUuPiMhnDJ4B4VpsOowyRcJf_AlZBAYkCL6WIzjvooBZaBtRWq9LfnXmnlmXZ6hl36ugWaNNHJR2T7PrQJKLfDprZD9-cFvON_dfITWu_s1OxHO7E20FI120QrLXPl7y30HTjUEpx3lnihwP2f1T1QepaYx-G9SYiwmXkEgz-7nt3EIdxGlyc_L45HecfDkDsmRJ0Lb6UR3BQhGBVoxYmnjHtrQzx9RRPMB1VRbqi0XnAureGuLKTxyrnALC7oDlqezWfVLsoq4oghUnksHIutWOw9loZzT4JUJR4g2stfuw6kHLgy7jTusEx7sWgQi27FMkD5otavFqTjH-XLp0Or6-QcCS2TiaZvVz3sp4GOCxGiK1HG8-ZBY0EkhD2leKsMgzg_ZXKAPrdzaPHDwFEfNVPx5f0_d4BWRxeTsR6fTs_30Fr8wiHwRcRXtFzfN9W3aD_Vdj-tkL9e7wp0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iKF7cl3Gt4LVDs7d4EnVwHTwoeAtZGnBhRrQD6q83L50OKqigpxKahORleS95ed-H0K4HrEIfjiW5cSxltiBpkeU6ZYR5XJgyaEW4GrjoiuNrdnrDbz5E8cOzSjhD-xooIu7VsLgfnW9exIVvsINzBmFUmLaDCpMQST4hADscgjiy7mgvDuoo-pWBtBWKNMFz39TySTl9gi793gCNiqgzi3TThfr9yX17UJm2ffuC7vifPs6hmaGVmuzX02oejZW9BTRZ81a-LqI9YFCLYN5JZIWCy_-kamDSk8g7DulBxINN9AuY-8lt7y4M4BK67hxdHRynQxaG1DIhqlQ4I7XgOvNeF56WnDjKuDPGh7NXMMCcL0rKNZXGCc6l0dzmmdSusNYzgzO6jMZ7_V65ipKSWKKJLBwWloVaDHYOS825I14WOW4h2ohf2SFEOTBlPCg8RDJtxKJALKoWSwulo1KPNUTHL_nzjyOrqng14mseE0V_LrrTzAIVliH4VoKM-4NnhQWR4PSU4qc8DLz8lMkWWqmn0KjBwFAf9FK29vfGbaOpy8OOOj_pnq2j6fCDg9eLiA00Xj0Nys1gPFVmK66PdwIhCRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+organelle+transport+after+traumatic+axonal+injury&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Kuznetsov%2C+IA&rft.au=Kuznetsov%2C+A+V&rft.date=2015-04-26&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=18&rft.issue=6&rft.spage=583&rft.epage=591&rft_id=info:doi/10.1080%2F10255842.2013.820721&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon