Modelling organelle transport after traumatic axonal injury
This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering Vol. 18; no. 6; pp. 583 - 591 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
26.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux. |
---|---|
AbstractList | This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux. This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux.This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux. |
Author | Kuznetsov, I.A. Kuznetsov, A.V. |
Author_xml | – sequence: 1 givenname: I.A. surname: Kuznetsov fullname: Kuznetsov, I.A. organization: Department of Biomedical Engineering, Johns Hopkins University – sequence: 2 givenname: A.V. surname: Kuznetsov fullname: Kuznetsov, A.V. email: avkuznet@ncsu.edu organization: Department of Mechanical and Aerospace Engineering, North Carolina State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23947620$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctKxDAUhoMo3t9ApEs3HXNPqwsR8QaKG12HNBeJtMmYtOi8vRlGXbhQVzmB7z8c_m8HrIcYLAAHCM4QbOAxgpixhuIZhojMGgwFRmtgG1HB6wazdr3MBamXzBbYyfkFQtighm6CLUzagmG4DU7vo7F978NzFdOzCmW21ZhUyPOYxkq50ablfxrU6HWl3mNQfeXDy5QWe2DDqT7b_c93FzxdXT5e3NR3D9e3F-d3taacjzU3nVCcKeicah2xDBtCmek6x1GLGDWutYQpIjrDGROdYrqBQplWa0c7BMkuOFrtnaf4Otk8ysFnXS4t58YpS8SpgKUEKv6BYgEFaQUv6OEnOnWDNXKe_KDSQn51UwC6AnSKOSfrvhEE5VKB_FIglwrkSkGJnfyIaT-W8mIoNfr-r_DZKuyDi2lQbzH1Ro5q0cfkihXtsyS_bvgAhO-d2w |
CitedBy_id | crossref_primary_10_1002_cnm_3523 crossref_primary_10_1016_j_tins_2016_10_007 |
Cites_doi | 10.1096/fj.09-142844 10.1073/pnas.092504999 10.1097/00001199-200307000-00003 10.1523/JNEUROSCI.14-05-02818.1994 10.1529/biophysj.106.097881 10.1371/journal.pone.0022899 10.1080/10255840903505154 10.1038/nature03528 10.1038/nrn2631 10.1007/s10867-010-9191-7 10.1038/35036345 10.1038/ncb1498 10.1017/CBO9780511616938 10.1016/j.expneurol.2008.04.025 10.1016/j.cub.2007.04.025 10.1038/71338 10.1016/j.neulet.2011.01.018 10.1091/mbc.10.11.3717 10.1088/1478-3975/6/4/046002 10.1016/j.expneurol.2009.07.014 10.1111/j.1460-9568.1997.tb01510.x 10.1016/j.neuroscience.2009.05.038 10.1371/journal.pone.0006378 10.1038/380451a0 10.1016/j.neuron.2012.11.021 10.1016/S0006-3495(01)75994-2 10.15620/cdc.5571 10.1177/107385840000600611 10.1016/S0079-6123(06)61004-2 10.1097/00001199-199912000-00009 10.1073/pnas.0508511103 10.1016/j.bpj.2010.11.047 10.1242/jcs.110.21.2635 10.1083/jcb.201108111 10.1073/pnas.0406598101 10.1016/j.bpj.2011.11.4024 10.1016/j.expneurol.2011.10.030 |
ContentType | Journal Article |
Copyright | 2013 Taylor & Francis 2013 |
Copyright_xml | – notice: 2013 Taylor & Francis 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1080/10255842.2013.820721 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-8259 |
EndPage | 591 |
ExternalDocumentID | 23947620 10_1080_10255842_2013_820721 820721 |
Genre | Article Journal Article |
GroupedDBID | --- .7F .QJ 0BK 0R~ 29F 2DF 30N 36B 4.4 53G 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD EMOBN E~A E~B F5P GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM M4Z NA5 P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AIYEW AMPGV CITATION 1TA ACTTO ADUMR AFBWG AFION AGVKY AGWUF ALRRR BWMZZ CAG CGR COF CUY CVF CYRSC DAOYK ECM EIF LJTGL NPM OPCYK TASJS 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c466t-6db7a65a0ffa9f3e52d345dbbf619154df9e35a37bd6557ba5c807ad9ccf4b103 |
ISSN | 1025-5842 1476-8259 |
IngestDate | Sun Aug 24 03:09:47 EDT 2025 Fri Jul 11 06:47:41 EDT 2025 Mon Jul 21 06:03:59 EDT 2025 Tue Jul 01 03:32:04 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Wed Dec 25 09:03:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fast axonal transport traumatic brain injury microtubules intracellular organelles molecular motors neurons |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c466t-6db7a65a0ffa9f3e52d345dbbf619154df9e35a37bd6557ba5c807ad9ccf4b103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23947620 |
PQID | 1627073976 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10255842_2013_820721 pubmed_primary_23947620 proquest_miscellaneous_1647001347 crossref_primary_10_1080_10255842_2013_820721 crossref_citationtrail_10_1080_10255842_2013_820721 proquest_miscellaneous_1627073976 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-26 |
PublicationDateYYYYMMDD | 2015-04-26 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Computer methods in biomechanics and biomedical engineering |
PublicationTitleAlternate | Comput Methods Biomech Biomed Engin |
PublicationYear | 2015 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0033 Vorobjev I (cit0035) 1997; 110 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 Yu WQ (cit0037) 1994; 14 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0036 cit0022 cit0001 cit0023 cit0020 cit0021 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0030 doi: 10.1096/fj.09-142844 – ident: cit0034 doi: 10.1073/pnas.092504999 – ident: cit0027 doi: 10.1097/00001199-200307000-00003 – volume: 14 start-page: 2818 year: 1994 ident: cit0037 publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.14-05-02818.1994 – ident: cit0001 doi: 10.1529/biophysj.106.097881 – ident: cit0010 doi: 10.1371/journal.pone.0022899 – ident: cit0016 doi: 10.1080/10255840903505154 – ident: cit0003 doi: 10.1038/nature03528 – ident: cit0004 doi: 10.1038/nrn2631 – ident: cit0017 doi: 10.1007/s10867-010-9191-7 – ident: cit0024 doi: 10.1038/35036345 – ident: cit0012 doi: 10.1038/ncb1498 – ident: cit0005 doi: 10.1017/CBO9780511616938 – ident: cit0013 doi: 10.1016/j.expneurol.2008.04.025 – ident: cit0009 doi: 10.1016/j.cub.2007.04.025 – ident: cit0015 doi: 10.1038/71338 – ident: cit0020 doi: 10.1016/j.neulet.2011.01.018 – ident: cit0021 doi: 10.1091/mbc.10.11.3717 – ident: cit0011 doi: 10.1088/1478-3975/6/4/046002 – ident: cit0014 doi: 10.1016/j.expneurol.2009.07.014 – ident: cit0028 doi: 10.1111/j.1460-9568.1997.tb01510.x – ident: cit0018 doi: 10.1016/j.neuroscience.2009.05.038 – ident: cit0023 doi: 10.1371/journal.pone.0006378 – ident: cit0033 doi: 10.1038/380451a0 – ident: cit0002 doi: 10.1016/j.neuron.2012.11.021 – ident: cit0025 doi: 10.1016/S0006-3495(01)75994-2 – ident: cit0008 doi: 10.15620/cdc.5571 – ident: cit0026 doi: 10.1177/107385840000600611 – ident: cit0007 doi: 10.1016/S0079-6123(06)61004-2 – ident: cit0031 doi: 10.1097/00001199-199912000-00009 – ident: cit0032 doi: 10.1073/pnas.0508511103 – ident: cit0006 doi: 10.1016/j.bpj.2010.11.047 – volume: 110 start-page: 2635 year: 1997 ident: cit0035 publication-title: J Cell Sci. doi: 10.1242/jcs.110.21.2635 – ident: cit0036 doi: 10.1083/jcb.201108111 – ident: cit0019 doi: 10.1073/pnas.0406598101 – ident: cit0022 doi: 10.1016/j.bpj.2011.11.4024 – ident: cit0029 doi: 10.1016/j.expneurol.2011.10.030 |
SSID | ssj0008184 |
Score | 2.0408318 |
Snippet | This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 583 |
SubjectTerms | Animals Axons - metabolism Axons - physiology Brain Injuries - physiopathology Computer Simulation Diffusion fast axonal transport Humans intracellular organelles microtubules Microtubules - metabolism Models, Neurological molecular motors neurons Organelles - metabolism traumatic brain injury |
Title | Modelling organelle transport after traumatic axonal injury |
URI | https://www.tandfonline.com/doi/abs/10.1080/10255842.2013.820721 https://www.ncbi.nlm.nih.gov/pubmed/23947620 https://www.proquest.com/docview/1627073976 https://www.proquest.com/docview/1647001347 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF9qD8GXw2_rFxF8zZnsZxZBKHpHkfN8abH4smSzu6BIKl566P31zn4kvWo9T19CumSzYWY6OzM7Mz-Enjvfq9CBW1JpQ3PaSJzLoqpziqkrpbawK_rQwLsTPlvQt0u2HI1eXchaWnf6oDnfWVfyP1yFMeCrr5L9B84OL4UBuAf-whU4DNcr8dgDmcWe2gGcycfgPeZD7Fae4L_h9zq1Zf0eon6f2s_r7TroHtkhwUmHDNlQlu-rgvsuzrFOP7DUbnoYbk6Czlvbna7Ogs6Z7hyepoTaFGMomT8uiYXsSS160FswVaLetHGMCp6Dfyl369JfFCOLcDVpj2URoes39R3zHf1qfjGfeEcOwEQRsYh6u1v2yXt1tDg-VvPD5fwa2sPgJuAx2pvO3nz8MOzFYI6EvIL--_viyap4sWuVLeNkq3Xtnx2QYIjMb6L95EFk0ygOt9DItrfR9Ygp-uMOejkIRTYIRTYIRRaEIhuEIotCkUWhuIsWR4fz17M8IWTkDeW8y7nRouasLpyrpSOWYUMoM1o78IvBODZOWsJqIrThjAlds6YqRG1k0ziqy4LcQ-N21doHKLO4wTUW0pS8ofAWXRpTipoxg52QVTlBpCeNalL7eI9i8kWVqctsT1DlCaoiQScoH2Z9je1T_vJ8dZHqqgthKxcxZhS5fOqznkMKVKQ_9wIar9anquRY-ANpwS97hvoMDELFBN2P7B0-GBMJso6Lh1eY_Qjd2PyBHqNx921tn4DZ2umnSTZ_AmIkk5U |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFA5iEX2x9Va3tjqCr7NM7hP6VKSy6u4-KfgWcpmAF3aLzoDtr29OZmZRQQv2aRgmCZOTyzk55-T7EDoKgFUY4rGktJ7lzCmSq6I0OSMsYGWrqBXBNTCZitElO7vifTbhQ5dWCWfo0AJFpL0aFjc4o_uUuPiMhnDJ4B4VpsOowyRcJf_AlZBAYkCL6WIzjvooBZaBtRWq9LfnXmnlmXZ6hl36ugWaNNHJR2T7PrQJKLfDprZD9-cFvON_dfITWu_s1OxHO7E20FI120QrLXPl7y30HTjUEpx3lnihwP2f1T1QepaYx-G9SYiwmXkEgz-7nt3EIdxGlyc_L45HecfDkDsmRJ0Lb6UR3BQhGBVoxYmnjHtrQzx9RRPMB1VRbqi0XnAureGuLKTxyrnALC7oDlqezWfVLsoq4oghUnksHIutWOw9loZzT4JUJR4g2stfuw6kHLgy7jTusEx7sWgQi27FMkD5otavFqTjH-XLp0Or6-QcCS2TiaZvVz3sp4GOCxGiK1HG8-ZBY0EkhD2leKsMgzg_ZXKAPrdzaPHDwFEfNVPx5f0_d4BWRxeTsR6fTs_30Fr8wiHwRcRXtFzfN9W3aD_Vdj-tkL9e7wp0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iKF7cl3Gt4LVDs7d4EnVwHTwoeAtZGnBhRrQD6q83L50OKqigpxKahORleS95ed-H0K4HrEIfjiW5cSxltiBpkeU6ZYR5XJgyaEW4GrjoiuNrdnrDbz5E8cOzSjhD-xooIu7VsLgfnW9exIVvsINzBmFUmLaDCpMQST4hADscgjiy7mgvDuoo-pWBtBWKNMFz39TySTl9gi793gCNiqgzi3TThfr9yX17UJm2ffuC7vifPs6hmaGVmuzX02oejZW9BTRZ81a-LqI9YFCLYN5JZIWCy_-kamDSk8g7DulBxINN9AuY-8lt7y4M4BK67hxdHRynQxaG1DIhqlQ4I7XgOvNeF56WnDjKuDPGh7NXMMCcL0rKNZXGCc6l0dzmmdSusNYzgzO6jMZ7_V65ipKSWKKJLBwWloVaDHYOS825I14WOW4h2ohf2SFEOTBlPCg8RDJtxKJALKoWSwulo1KPNUTHL_nzjyOrqng14mseE0V_LrrTzAIVliH4VoKM-4NnhQWR4PSU4qc8DLz8lMkWWqmn0KjBwFAf9FK29vfGbaOpy8OOOj_pnq2j6fCDg9eLiA00Xj0Nys1gPFVmK66PdwIhCRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+organelle+transport+after+traumatic+axonal+injury&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Kuznetsov%2C+IA&rft.au=Kuznetsov%2C+A+V&rft.date=2015-04-26&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=18&rft.issue=6&rft.spage=583&rft.epage=591&rft_id=info:doi/10.1080%2F10255842.2013.820721&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon |