Modelling organelle transport after traumatic axonal injury

This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 18; no. 6; pp. 583 - 591
Main Authors Kuznetsov, I.A., Kuznetsov, A.V.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 26.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some microtubules (MTs) near the peaks of undulations. The breakage is followed by catastrophic MT depolymerisation around the broken ends. Although after relaxation axons regain their straight geometry, the structure of the axon after TBI is characterised by the presence of periodic regions where the density of MTs has been decreased due to depolymerisation. We modelled organelle transport in an axon segment with such a damaged MT structure and investigated how this structure affects the distributions of organelle concentrations and fluxes. The modelling results suggest that organelles accumulate at the boundaries of the region where the density of MTs has been decreased by depolymerisation. According to the model, the presence of such damaged regions decreases the organelle flux by only about 12%. This provides evidence that axon degradation after TBI may be caused by organelle accumulation rather than by starvation due to insufficient organelle flux.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1025-5842
1476-8259
1476-8259
DOI:10.1080/10255842.2013.820721