Sugar metabolism reprogramming in a non-climacteric bud mutant of a climacteric plum fruit during development on the tree

We investigated sugar metabolism in leaves and fruits of two Japanese plum (Prunus salicina Lindl.) cultivars, the climacteric Santa Rosa and its bud sport mutant the non-climacteric Sweet Miriam, during development on the tree. We previously characterized differences between the two cultivars. Here...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 68; no. 21/22; pp. 5813 - 5828
Main Authors Farcuh, Macarena, Li, Bosheng, Rivero, Rosa M., Shlizerman, Lyudmila, Sadka, Avi, Blumwald, Eduardo
Format Journal Article
LanguageEnglish
Published England Oxford University Press 16.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated sugar metabolism in leaves and fruits of two Japanese plum (Prunus salicina Lindl.) cultivars, the climacteric Santa Rosa and its bud sport mutant the non-climacteric Sweet Miriam, during development on the tree. We previously characterized differences between the two cultivars. Here, we identified key sugar metabolic pathways. Pearson coefficient correlations of metabolomics and transcriptomic data and weighted gene co-expression network analysis (WGCNA) of RNA sequencing (RNA-Seq) data allowed the identification of 11 key sugar metabolismassociated genes: sucrose synthase, sucrose phosphate synthase, cytosolic invertase, vacuolar invertase, invertase inhibitor, α-galactosidase, β-galactosidase, galactokinase, trehalase, galactinol synthase, and raffinose synthase. These pathways were further assessed and validated through the biochemical characterization of the gene products and with metabolite analysis. Our results demonstrated the reprogramming of sugar metabolism in both leaves and fruits in the non-climacteric plum, which displayed a shift towards increased sorbitol synthesis. Climacteric and nonclimacteric fruits showed differences in their UDP-galactose metabolism towards the production of galactose and raffinose, respectively. The higher content of galactinol, myo-inositol, raffinose, and trehalose in the non-climacteric fruits could improve the ability of the fruits to cope with the oxidative processes associated with fruit ripening. Overall, our results support a relationship between sugar metabolism, ethylene, and ripening behavior.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erx391