A Tumor-Associated Fibronectin Isoform Generated by Alternative Splicing of Messenger RNA Precursors

Fibronectin (FN) represents the mixture of a number of structurally different molecules (isoforms) whose make-up varies depending on the FN sources. FN from cultured transformed human cells has a very different isoform composition with respect to its normal counterpart. In fact, SV-40-transformed WI...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 108; no. 3; pp. 1139 - 1148
Main Authors Carnemolla, Barbara, Balza, Enrica, Siri, Annalisa, Zardi, Luciano, Nicotra, Maria Rita, Bigotti, Aldo, Natali, Pier Giorgio
Format Journal Article
LanguageEnglish
Published New York, NY Rockefeller University Press 01.03.1989
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fibronectin (FN) represents the mixture of a number of structurally different molecules (isoforms) whose make-up varies depending on the FN sources. FN from cultured transformed human cells has a very different isoform composition with respect to its normal counterpart. In fact, SV-40-transformed WI-38VAI3 human fibroblasts produce high levels of a FN isoform (B-FN) which is very poorly expressed in their normal, WI-38, counterpart. We have recently demonstrated that the B-FN isoform derives from a differential splicing pattern of the FN primary transcript which leads, in transformed cells, to a high level expression of the exon ED-B. Here we report on the production and characterization of a monoclonal antibody (BC-1) which recognizes an epitope within the protein sequence coded for by the ED-B exon. This monoclonal antibody makes it possible to carry out immunohistochemical analysis of the distribution of the ED-B-containing FN isoform (B-FN) in human tissues. The results show that while in normal, adult, human tissues total FN has a widespread distribution, the B-FN isoform is restricted only to synovial cells, to some vessels and areas of the interstitium of the ovary, and to the myometrium. On the contrary, the B-FN isoform has a much greater expression in fetal and tumor tissues. These results demonstrate that, in vivo, different FN isoforms have a differential distribution and indicate that the B-FN isoform may play a role in ontogenesis and oncogenetic processes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.108.3.1139