Improvements in Toxicology Testing to Identify Fentanyl Analogs and Other Novel Synthetic Opioids in Fatal Drug Overdoses, Connecticut, January 2016–June 2019
Objectives Drug overdose deaths in Connecticut increasingly involve a growing number of fentanyl analogs and other novel nonfentanyl synthetic opioids (ie, novel synthetics). Current postmortem toxicology testing methods often lack the sophistication needed to detect these compounds. We examined how...
Saved in:
Published in | Public health reports (1974) Vol. 136; no. 1_suppl; pp. 80S - 86S |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.11.2021
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objectives
Drug overdose deaths in Connecticut increasingly involve a growing number of fentanyl analogs and other novel nonfentanyl synthetic opioids (ie, novel synthetics). Current postmortem toxicology testing methods often lack the sophistication needed to detect these compounds. We examined how improved toxicology testing of fatal drug overdoses can determine the prevalence and rapidly evolving trends of novel synthetics.
Methods
From 2016 to June 2019, the Connecticut Office of the Chief Medical Examiner increased its scope of toxicology testing of suspected drug overdose deaths in Connecticut from basic to enhanced toxicology testing to detect novel synthetics. The toxicology laboratory also expanded its testing panels during this time. We analyzed toxicology results to identify and quantify the involvement of novel synthetics over time.
Results
From 2016 to June 2019, 3204 drug overdose deaths received enhanced toxicology testing; novel synthetics were detected in 174 (5.4%) instances. Ten different novel synthetics were detected with 205 total occurrences. Of 174 overdose deaths with a novel synthetic detected, most had 1 (n = 146, 83.9%) or 2 (n = 26, 14.9%) novel synthetics detected, with a maximum of 4 novel synthetics detected. Para-fluorobutyrylfentanyl/FIBF, furanylfentanyl, and U-47700 were most identified overall, but specific novel synthetics came in and out of prominence during the study period, and the variety of novel synthetics detected changed from year to year.
Conclusions
Enhanced toxicology testing for drug overdose deaths is effective in detecting novel synthetics that are not identified through basic toxicology testing. Identifying emerging novel synthetics allows for a timely and focused response to potential drug outbreaks and illustrates the changing drug market. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0033-3549 1468-2877 |
DOI: | 10.1177/00333549211042829 |