Identification of Glucose Transporter 4 Knockdown-dependent Transcriptional Activation Element on the Retinol Binding Protein 4 Gene Promoter and Requirement of the 20 S Proteasome Subunit for Transcriptional Activity

Retinol binding protein 4 (RBP4) is the transport protein that carries retinol in blood. RBP4 was described recently as a new adipokine that reduced insulin sensitivity. Mice lacking glucose transporter 4 (GLUT4) in adipocytes have enhanced Rbp4 gene expression; however, the molecular mechanism is u...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 285; no. 33; pp. 25545 - 25553
Main Authors Inoue, Erina, Yamashita, Aoi, Inoue, Hirofumi, Sekiguchi, Mariko, Shiratori, Asuka, Yamamoto, Yuji, Tadokoro, Tadahiro, Ishimi, Yoshiko, Yamauchi, Jun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.08.2010
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Retinol binding protein 4 (RBP4) is the transport protein that carries retinol in blood. RBP4 was described recently as a new adipokine that reduced insulin sensitivity. Mice lacking glucose transporter 4 (GLUT4) in adipocytes have enhanced Rbp4 gene expression; however, the molecular mechanism is unknown. We found a G4KA (GLUT4knockdown-dependent transcriptional activation) element located ∼1.3 kb upstream of the Rbp4 promoter. Mutations within the G4KA sequence significantly reduced expression of the Rbp4 promoter-reporter construct in G4KD-L1 (GLUT4knockdown 3T3-L1) adipocyte cells. In a yeast one-hybrid screen of a G4KD-L1 cell cDNA library, using the G4KA element as bait, we identified subunits of the 20 S proteasome, PSMB1 and PSMA4, as binding partners. In chromatin immunoprecipitation assays, both subunits bound to the G4KA element; however, only PSMB1 was tightly bound in the GLUT4 knockdown model. PSMB1 RNA interference, but not PSMA4, significantly inhibited Rbp4 transcription. Nuclear transportation of PSMB1 was increased in G4KD-L1 cells. These results provide evidence for an exclusive proteasome subunit-related mechanism for transcriptional activation of RBP4 within a GLUT4 knockdown model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
1083-351X
DOI:10.1074/jbc.M109.079152