Validation of diffuse correlation spectroscopy measures of critical closing pressure against transcranial Doppler ultrasound in stroke patients
Significance: Intracranial pressure (ICP), variability in perfusion, and resulting ischemia are leading causes of secondary brain injury in patients treated in the neurointensive care unit. Continuous, accurate monitoring of cerebral blood flow (CBF) and ICP guide intervention and ultimately reduce...
Saved in:
Published in | Journal of biomedical optics Vol. 26; no. 3; p. 036008 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.03.2021
S P I E - International Society for |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Significance: Intracranial pressure (ICP), variability in perfusion, and resulting ischemia are leading causes of secondary brain injury in patients treated in the neurointensive care unit. Continuous, accurate monitoring of cerebral blood flow (CBF) and ICP guide intervention and ultimately reduce morbidity and mortality. Currently, only invasive tools are used to monitor patients at high risk for intracranial hypertension.
Aim: Diffuse correlation spectroscopy (DCS), a noninvasive near-infrared optical technique, is emerging as a possible method for continuous monitoring of CBF and critical closing pressure (CrCP or zero-flow pressure), a parameter directly related to ICP.
Approach: We optimized DCS hardware and algorithms for the quantification of CrCP. Toward its clinical translation, we validated the DCS estimates of cerebral blood flow index (CBFi) and CrCP in ischemic stroke patients with respect to simultaneously acquired transcranial Doppler ultrasound (TCD) cerebral blood flow velocity (CBFV) and CrCP.
Results: We found CrCP derived from DCS and TCD were highly linearly correlated (ipsilateral R2 = 0.77, p = 9 × 10 − 7; contralateral R2 = 0.83, p = 7 × 10 − 8). We found weaker correlations between CBFi and CBFV (ipsilateral R2 = 0.25, p = 0.03; contralateral R2 = 0.48, p = 1 × 10 − 3) probably due to the different vasculature measured.
Conclusion: Our results suggest DCS is a valid alternative to TCD for continuous monitoring of CrCP. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1083-3668 1560-2281 |
DOI: | 10.1117/1.JBO.26.3.036008 |