Plasmon-Enhanced Sub-Wavelength Laser Ablation: Plasmonic Nanojets

In response to the incident light's electric field, the electron density oscillates in the plasmonic hotspots producing an electric current. Associated Ohmic losses raise the temperature of the material within the plasmonic hotspot above the melting point. A nanojet and nanosphere ejection can...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 24; no. 10; pp. OP29 - OP35
Main Authors Valev, Ventsislav K., Denkova, Denitza, Zheng, Xuezhi, Kuznetsov, Arseniy I., Reinhardt, Carsten, Chichkov, Boris N., Tsutsumanova, Gichka, Osley, Edward J., Petkov, Veselin, De Clercq, Ben, Silhanek, Alejandro V., Jeyaram, Yogesh, Volskiy, Vladimir, Warburton, Paul A., Vandenbosch, Guy A. E., Russev, Stoyan, Aktsipetrov, Oleg A., Ameloot, Marcel, Moshchalkov, Victor V., Verbiest, Thierry
Format Journal Article Web Resource
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 08.03.2012
WILEY‐VCH Verlag
Wiley-VCH Verlag Gmbh
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In response to the incident light's electric field, the electron density oscillates in the plasmonic hotspots producing an electric current. Associated Ohmic losses raise the temperature of the material within the plasmonic hotspot above the melting point. A nanojet and nanosphere ejection can then be observed precisely from the plasmonic hotspots.
Bibliography:ArticleID:ADMA201103807
ark:/67375/WNG-73DGTDHF-H
istex:1A34C84C04119F125B71BBA5CD857E7F8F35B292
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-84857612950
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.201103807