Explaining One-Dimensional Convolutional Models in Human Activity Recognition and Biometric Identification Tasks

Due to wearables’ popularity, human activity recognition (HAR) plays a significant role in people’s routines. Many deep learning (DL) approaches have studied HAR to classify human activities. Previous studies employ two HAR validation approaches: subject-dependent (SD) and subject-independent (SI)....

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 15; p. 5644
Main Authors Aquino, Gustavo, Costa, Marly G. F., Costa Filho, Cicero F. F.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to wearables’ popularity, human activity recognition (HAR) plays a significant role in people’s routines. Many deep learning (DL) approaches have studied HAR to classify human activities. Previous studies employ two HAR validation approaches: subject-dependent (SD) and subject-independent (SI). Using accelerometer data, this paper shows how to generate visual explanations about the trained models’ decision making on both HAR and biometric user identification (BUI) tasks and the correlation between them. We adapted gradient-weighted class activation mapping (grad-CAM) to one-dimensional convolutional neural networks (CNN) architectures to produce visual explanations of HAR and BUI models. Our proposed networks achieved 0.978 and 0.755 accuracy, employing both SD and SI. The proposed BUI network achieved 0.937 average accuracy. We demonstrate that HAR’s high performance with SD comes not only from physical activity learning but also from learning an individual’s signature, as in BUI models. Our experiments show that CNN focuses on larger signal sections in BUI, while HAR focuses on smaller signal segments. We also use the grad-CAM technique to identify database bias problems, such as signal discontinuities. Combining explainable techniques with deep learning can help models design, avoid results overestimation, find bias problems, and improve generalization capability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22155644