Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments

Biodegradation by microorganisms is a useful tool that helps alleviating hydrocarbon pollution in nature. Microbes are more efficient in degradation under aerobic than anaerobic conditions, but the majority of sediment by volume is generally anoxic. Incubation experiments were conducted to study the...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 248; p. 126023
Main Authors Bonaglia, Stefano, Broman, Elias, Brindefalk, Björn, Hedlund, Erika, Hjorth, Tomas, Rolff, Carl, Nascimento, Francisco J.A., Udekwu, Klas, Gunnarsson, Jonas S.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Biodegradation by microorganisms is a useful tool that helps alleviating hydrocarbon pollution in nature. Microbes are more efficient in degradation under aerobic than anaerobic conditions, but the majority of sediment by volume is generally anoxic. Incubation experiments were conducted to study the biodegradation potential of naphthalene—a common polycyclic aromatic hydrocarbon (PAH)—and the diversity of microbial communities in presence/absence of activated carbon (AC) under aerobic/anaerobic conditions. Radio-respirometry experiments with endogenous microorganisms indicated that degradation of naphthalene was strongly stimulated (96%) by the AC addition under anaerobic conditions. In aerobic conditions, however, AC had no effects on naphthalene biodegradation. Bioaugmentation tests with cultured microbial populations grown on naphthalene showed that AC further stimulated (92%) naphthalene degradation in anoxia. Analysis of the 16S rRNA gene sequences implied that sediment amendment with AC increased microbial community diversity and changed community structure. Moreover, the relative abundance of Geobacter, Thiobacillus, Sulfuricurvum, and methanogenic archaea increased sharply after amendment with AC under anaerobic conditions. These results may be explained by the fact that AC particles promoted direct interspecies electron transfer (DIET) between microorganisms involved in PAH degradation pathways. We suggest that important ecosystem functions mediated by microbes—such as hydrocarbon degradation—can be induced and that AC enrichment strategies can be exploited for facilitating bioremediation of anoxic oil-contaminated sediments and soils. •Activated carbon (AC) boosts PAH biodegradation under anaerobic conditions.•Under aerobic conditions AC does not promote biodegradation.•AC stimulates diversity of PAH degrading microbes both without and with oxygen.•Bioremediation of oil-polluted sediments may be facilitated by AC treatments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
1879-1298
DOI:10.1016/j.chemosphere.2020.126023