Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and tr...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cellular and infection microbiology Vol. 12; p. 834485
Main Authors Zhou, Zheng, Sun, Bao, Yu, Dongsheng, Zhu, Chunsheng
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.
AbstractList Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.
Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.
Author Sun, Bao
Zhou, Zheng
Yu, Dongsheng
Zhu, Chunsheng
AuthorAffiliation 1 Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
3 Institution of Clinical Pharmacy, Central South University , Changsha , China
2 Department of Pharmacy, The Second Xiangya Hospital, Central South University , Changsha , China
AuthorAffiliation_xml – name: 2 Department of Pharmacy, The Second Xiangya Hospital, Central South University , Changsha , China
– name: 1 Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
– name: 3 Institution of Clinical Pharmacy, Central South University , Changsha , China
Author_xml – sequence: 1
  givenname: Zheng
  surname: Zhou
  fullname: Zhou, Zheng
– sequence: 2
  givenname: Bao
  surname: Sun
  fullname: Sun, Bao
– sequence: 3
  givenname: Dongsheng
  surname: Yu
  fullname: Yu, Dongsheng
– sequence: 4
  givenname: Chunsheng
  surname: Zhu
  fullname: Zhu, Chunsheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35242721$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtPHDEUha2IKDzCD0gTuUyzG7_HkyIRIgFWAkFBastPYjQz3tieSPvv42UJAoq4sXV97neu7jkEe1OaPAAfMFpSKvvPwcbRLAkiZCkpY5K_AQeEUL4gvZR7z9774LiUe9ROh4js6TuwTzlhpCP4AHw7nyu8ijYnE1PVX-DJBFfjOuWqpwpvBr3xGcYJ3m7WHhL4PWrjqy_wyg9DrHN5D94GPRR__HgfgZ9nP25PLxaX1-er05PLhWWC10XAkvMQBBGuR0IS66nDoeOUYy8Rw9wZ7oTg3sieaytRq7OAXHDId1ozegRWO65L-l6tcxx13qiko3oopHyndK7RDl5p0zFvsGsOjGne9663nemR7GQnjDaN9XXHWs9m9M76qWY9vIC-_JniL3WX_igppWjjN8CnR0BOv2dfqhpjsW0jevJpLooIKpo3w7hJPz73ejL5l0AT4J2gRVBK9uFJgpHaBq0eglbboNUu6NbTveqxseoa03bcOPyn8y_7xK1M
CitedBy_id crossref_primary_10_1007_s11695_024_07378_z
crossref_primary_10_3389_fnut_2025_1508381
crossref_primary_10_1007_s00592_023_02217_6
crossref_primary_10_1128_msystems_00573_23
crossref_primary_10_1038_s41581_022_00647_z
crossref_primary_10_3390_biomedicines11041097
crossref_primary_10_1007_s12602_024_10353_w
crossref_primary_10_7717_peerj_17891
crossref_primary_10_3748_wjg_v29_i1_19
crossref_primary_10_1038_s41598_025_90854_y
crossref_primary_10_1007_s13668_024_00523_1
crossref_primary_10_3390_nu16223935
crossref_primary_10_2147_DMSO_S412872
crossref_primary_10_3390_microorganisms12112256
crossref_primary_10_1080_14779072_2025_2463366
crossref_primary_10_3389_fimmu_2024_1434804
crossref_primary_10_3390_nu15245080
crossref_primary_10_4239_wjd_v14_i10_1502
crossref_primary_10_1038_s41366_023_01369_3
crossref_primary_10_3389_fpubh_2023_1255059
crossref_primary_10_4239_wjd_v15_i11_2182
crossref_primary_10_3389_frmbi_2024_1359580
crossref_primary_10_3389_fendo_2023_1327495
crossref_primary_10_3390_biology13080641
crossref_primary_10_5312_wjo_v16_i3_102274
crossref_primary_10_1128_msystems_00532_24
crossref_primary_10_3389_fgene_2024_1325401
crossref_primary_10_3389_fmolb_2023_1224982
crossref_primary_10_1007_s40122_024_00602_9
crossref_primary_10_1210_endrev_bnae033
crossref_primary_10_3389_fmed_2025_1555077
crossref_primary_10_3389_fendo_2023_1156757
crossref_primary_10_3390_ijms24086978
crossref_primary_10_3389_fendo_2024_1392306
crossref_primary_10_1080_10408398_2022_2110035
crossref_primary_10_1186_s12866_023_02852_7
crossref_primary_10_1002_bab_2518
crossref_primary_10_1136_gutjnl_2023_331441
crossref_primary_10_29219_fnr_v67_9725
crossref_primary_10_1515_jbcpp_2024_0043
crossref_primary_10_3390_medicines10090053
crossref_primary_10_1089_ars_2022_0028
crossref_primary_10_3389_fgene_2023_1184473
crossref_primary_10_3390_ijms241713507
crossref_primary_10_3389_fimmu_2023_1274654
crossref_primary_10_1039_D4MD00023D
crossref_primary_10_3390_ijms25169118
crossref_primary_10_1007_s11596_024_2957_0
crossref_primary_10_1021_acs_jproteome_4c00507
crossref_primary_10_3390_nu16183134
crossref_primary_10_4103_jod_jod_157_24
crossref_primary_10_1186_s12886_023_03118_6
crossref_primary_10_1007_s11154_023_09816_2
crossref_primary_10_3390_biomedicines12112529
crossref_primary_10_1016_j_ijbiomac_2025_142145
crossref_primary_10_3390_ijerph21020237
crossref_primary_10_3390_ijms241713338
crossref_primary_10_1186_s13020_023_00854_1
crossref_primary_10_3390_nu16223951
crossref_primary_10_1055_a_2273_5602
crossref_primary_10_3389_fphar_2025_1520439
crossref_primary_10_1021_acs_jafc_1c07851
crossref_primary_10_1080_14789450_2023_2279984
crossref_primary_10_4239_wjd_v16_i3_103032
crossref_primary_10_1007_s12672_024_01662_1
crossref_primary_10_2147_DMSO_S377856
crossref_primary_10_3389_fmicb_2024_1355396
crossref_primary_10_1080_10408398_2023_2230287
crossref_primary_10_1111_nyas_15058
crossref_primary_10_1186_s12982_024_00213_x
crossref_primary_10_14341_DM13196
crossref_primary_10_3389_fendo_2023_1141516
crossref_primary_10_3390_ijms252212455
crossref_primary_10_1007_s00394_023_03168_y
crossref_primary_10_1007_s12602_024_10377_2
crossref_primary_10_3389_fcimb_2023_1191126
crossref_primary_10_3389_fcvm_2022_1041044
crossref_primary_10_51847_qj30frczgF
crossref_primary_10_3390_life14101219
crossref_primary_10_1515_biol_2022_0741
crossref_primary_10_1002_vetr_3822
crossref_primary_10_4103_aja202427
crossref_primary_10_1007_s10517_024_06275_w
crossref_primary_10_3390_biomedicines11030827
crossref_primary_10_3390_biomedicines11030707
crossref_primary_10_3389_fmicb_2024_1443743
crossref_primary_10_3390_biom13091307
crossref_primary_10_1016_j_psj_2023_102900
crossref_primary_10_1111_jcmm_70045
crossref_primary_10_5658_WOOD_2023_51_5_358
crossref_primary_10_3390_ph17070898
crossref_primary_10_31083_j_jin2305092
crossref_primary_10_1155_2022_3255401
crossref_primary_10_12677_acm_2024_1482299
crossref_primary_10_1186_s10020_023_00716_4
crossref_primary_10_1093_ijfood_vvae071
crossref_primary_10_2147_IJN_S492651
crossref_primary_10_3389_fcvm_2022_990182
crossref_primary_10_12677_ACM_2023_13122796
crossref_primary_10_3390_nu15214551
crossref_primary_10_1016_j_numecd_2024_03_014
crossref_primary_10_3748_wjg_v31_i5_99913
crossref_primary_10_1080_1744666X_2023_2260103
crossref_primary_10_1007_s10753_024_02012_7
crossref_primary_10_21706_aep_18_3_171
crossref_primary_10_3390_ijms241713381
crossref_primary_10_3389_fcimb_2024_1370999
crossref_primary_10_3389_fmicb_2023_1158652
crossref_primary_10_1111_febs_17124
crossref_primary_10_3390_ph17111530
crossref_primary_10_3390_pharmaceutics15041202
crossref_primary_10_4239_wjd_v14_i12_1766
crossref_primary_10_1021_acs_jafc_3c02909
crossref_primary_10_1161_CIRCRESAHA_123_321763
crossref_primary_10_3390_jof10050333
crossref_primary_10_4014_jmb_2402_02021
crossref_primary_10_3389_fmicb_2022_1029890
crossref_primary_10_3389_fpls_2024_1337653
crossref_primary_10_1111_jcmm_70347
crossref_primary_10_2174_1871530322666220928144548
crossref_primary_10_3390_ph18010055
crossref_primary_10_3389_fmolb_2022_982672
crossref_primary_10_1128_msphere_00380_24
crossref_primary_10_3390_foods14060955
crossref_primary_10_3390_app13116605
crossref_primary_10_1007_s13668_023_00462_3
crossref_primary_10_1080_19490976_2024_2323237
crossref_primary_10_3390_ph16030462
crossref_primary_10_1007_s10620_022_07812_1
crossref_primary_10_3390_antiox12081515
Cites_doi 10.1210/clinem/dgaa751
10.3390/microorganisms8091360
10.3390/nu11102310
10.3389/fcimb.2021.646348
10.1016/j.diabres.2020.108116
10.1038/nrendo.2014.171
10.1002/advs.202100536
10.1038/s41598-019-41195-0
10.4240/wjgs.v8.i4.301
10.1038/s41467-019-11944-w
10.7554/eLife.20145
10.1136/gutjnl-2014-307913
10.1136/gut.2008.165886
10.1053/j.gastro.2020.10.042
10.1016/j.celrep.2020.108013
10.18632/oncotarget.10597
10.1038/ijo.2014.153
10.2337/db11-0004
10.18632/aging.101978
10.1038/emm.2017.282
10.1016/j.biochi.2021.02.004
10.1038/srep30887
10.1007/s00394-020-02403-0
10.1007/s40520-020-01553-9
10.1016/j.cmet.2009.08.001
10.1038/nchembio.1864
10.1016/j.cmet.2016.01.003
10.1016/j.envres.2021.112640
10.2337/db20-1108
10.1016/j.cmet.2016.06.013
10.3945/ajcn.117.157107
10.1186/s40168-021-01046-5
10.1053/j.gastro.2021.06.056
10.18632/oncotarget.14611
10.1126/science.aar3318
10.1096/fj.13-243568
10.1038/ncomms8489
10.1016/j.freeradbiomed.2021.08.240
10.3390/microorganisms6040098
10.1080/19490976.2020.1842990
10.1039/d1fo00882j
10.1038/s41598-018-37242-x
10.3390/jcm6090086
10.21037/atm-20-6717
10.1530/joe-18-0137
10.1177/00220345211009449
10.1038/ncomms2852
10.1172/jci76289
10.2337/db06-1491
10.1039/d1fo00698c
10.1038/s41598-021-97868-2
10.1530/jme-19-0132
10.2337/db18-1321
10.1016/j.nut.2018.11.019
10.1016/j.cmet.2017.04.013
10.1021/acs.jafc.0c00605
10.1016/j.cmet.2019.11.001
10.1371/journal.pone.0071108
10.3390/nu12102996
10.1038/s41467-019-11370-y
10.1007/s10038-008-0341-8
10.15252/embj.2020107134
10.2337/db19-0153
10.1038/s41419-021-03930-2
10.1007/s00592-019-01316-7
10.1111/1753-0407.12986
10.1038/s41467-021-27385-3
10.1128/am.19.2.295-300.1970
10.1038/nature11450
10.1016/j.cell.2018.09.055
10.18632/aging.103750
10.1038/nature18646
10.1016/j.biopha.2020.110147
10.3389/fmicb.2019.00232
10.3390/microorganisms8010094
10.1016/j.celrep.2016.06.027
10.1038/s41423-020-00592-6
10.2337/diabetes.50.1.63
10.1016/j.toxlet.2018.01.006
10.1016/j.diabres.2019.107843
10.3389/fcell.2021.689469
10.1016/j.cmet.2021.03.025
10.1111/imm.13028
10.1016/j.jhep.2019.08.005
10.18632/aging.202174
10.1038/s41598-020-66598-2
10.3892/etm.2019.7943
10.3390/nu13092983
10.2337/dc20-2975
10.1136/gutjnl-2014-306928
10.1136/gutjnl-2015-310904
10.1128/mSystems.00109-20
10.3390/cells9122705
10.3389/fcimb.2021.719542
10.1152/physiol.00041.2015
10.1016/j.celrep.2014.10.032
10.7150/thno.56598
10.1007/s00253-020-10689-7
10.1038/nm.4236
10.1007/s00125-018-4550-1
10.1038/s41586-019-1236-x
10.1186/s40168-021-01052-7
10.1016/j.molmet.2016.10.008
10.1002/hep.29857
10.1038/ncomms7495
10.1126/scitranslmed.aav1892
10.3389/fmicb.2017.01936
10.1186/s12967-019-02169-y
10.1016/j.cmet.2017.03.021
10.1038/nature12506
10.1016/j.lfs.2020.118881
10.1073/pnas.1711169114
10.1371/journal.pone.0243077
10.2337/dc13-2817
10.1016/s0140-6736(13)62154-6
10.1038/s41589-020-0604-z
10.1007/s00125-018-4583-5
10.1007/s12020-019-02103-8
10.1186/s40168-021-01088-9
10.1128/Spectrum.00074-21
10.2147/dmso.s240728
10.1016/j.cell.2013.12.016
10.1152/ajpgi.00105.2020
10.3389/fphys.2018.00024
10.1038/nature12198
10.1038/s41467-019-09735-4
10.1021/acs.jafc.9b02083
10.1016/j.lfs.2019.116793
10.1096/fj.201801209R
10.18632/aging.102469
10.1186/s40168-021-01097-8
10.1016/j.ebiom.2019.08.048
10.1053/j.gastro.2017.02.016
10.1126/science.1179721
10.1016/j.bbrc.2005.01.139
10.1186/s12986-018-0318-3
10.1021/acs.jafc.1c02925
10.1073/pnas.1219451110
10.2337/db19-0920
10.1038/s41467-020-14676-4
10.3389/fmicb.2019.03141
10.3390/nu12113557
10.1007/s00592-020-01610-9
10.1016/j.micpath.2020.104589
10.1016/s0140-6736(12)60283-9
10.1038/nature04330
10.2337/db18-1307
10.1016/j.cmet.2016.05.005
10.2337/db07-1403
10.1155/2020/1904609
10.1016/j.jbiosc.2014.03.001
10.1126/sciadv.abd7954
10.1007/s12020-021-02721-1
10.3389/fimmu.2020.571731
10.1016/j.numecd.2021.01.007
10.1002/hep.28572
10.1016/j.cmet.2015.06.001
10.1016/j.reprotox.2021.10.008
ContentType Journal Article
Copyright Copyright © 2022 Zhou, Sun, Yu and Zhu.
Copyright © 2022 Zhou, Sun, Yu and Zhu 2022 Zhou, Sun, Yu and Zhu
Copyright_xml – notice: Copyright © 2022 Zhou, Sun, Yu and Zhu.
– notice: Copyright © 2022 Zhou, Sun, Yu and Zhu 2022 Zhou, Sun, Yu and Zhu
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fcimb.2022.834485
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2235-2988
ExternalDocumentID oai_doaj_org_article_ab74eb1d3d144a599d9c7b9087876bab
PMC8886906
35242721
10_3389_fcimb_2022_834485
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
INR
KQ8
M48
M~E
OK1
PGMZT
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-f1855ff626d90682ce3d1f75351e80415db5d665eb895ac8051e4f0dfd0e7aa43
IEDL.DBID M48
ISSN 2235-2988
IngestDate Wed Aug 27 01:14:35 EDT 2025
Thu Aug 21 18:18:33 EDT 2025
Thu Jul 10 23:40:21 EDT 2025
Mon Jul 21 05:48:13 EDT 2025
Tue Jul 01 01:42:52 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords type 2 diabetes mellitus
pathogenesis
glucose metabolism
insulin resistance
gut microbiota
Language English
License Copyright © 2022 Zhou, Sun, Yu and Zhu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-f1855ff626d90682ce3d1f75351e80415db5d665eb895ac8051e4f0dfd0e7aa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Kanthida Kusonmano, King Mongkut’s University of Technology Thonburi, Thailand; Yotsawat Pomyen, Chulabhorn Research Institute, Thailand
These authors have contributed equally to this work
Edited by: Intawat Nookaew, University of Arkansas for Medical Sciences, United States
This article was submitted to Microbiome in Health and Disease, a section of the journal Frontiers in Cellular and Infection Microbiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcimb.2022.834485
PMID 35242721
PQID 2636144411
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ab74eb1d3d144a599d9c7b9087876bab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8886906
proquest_miscellaneous_2636144411
pubmed_primary_35242721
crossref_primary_10_3389_fcimb_2022_834485
crossref_citationtrail_10_3389_fcimb_2022_834485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cellular and infection microbiology
PublicationTitleAlternate Front Cell Infect Microbiol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Katsuma (B53) 2005; 329
Yang (B134) 2021; 60
Qin (B93) 2012; 490
Everard (B27) 2013; 110
Cavallari (B9) 2017; 25
Cani (B7) 2009; 58
Vanweert (B113) 2021; 106
De Vadder (B20) 2014; 156
Vijay-Kumar (B114) 2010; 328
Chelakkot (B14) 2018; 50
Luo (B71) 2021; 160
Lee (B61) 2021; 12
Watanabe (B123) 2006; 439
Hong (B40) 2017; 152
Beli (B4) 2019; 11
Thaiss (B109) 2018; 359
Zhao (B153) 2020; 69
Liu (B67) 2020; 31
Wei (B125) 2018; 15
Thomas (B110) 2009; 10
Liu (B65) 2020; 11
Zhang (B143) 2021; 33
Zhang (B145) 2013; 8
Luck (B70) 2019; 10
Plovier (B90) 2017; 23
Du (B25) 2021; 73
Hill (B39) 2016; 5
Morshedi (B77) 2020; 18
Yesair (B137) 1970; 19
Psichas (B91) 2015; 39
Tabák (B106) 2012; 379
Lee (B60) 2008; 53
Shan (B103) 2017; 106
Liu (B66) 2021; 175
Wang (B121) 2020; 162
Han (B38) 2021; 9
Zhu (B159) 2021; 267
Kang (B49) 2022; 207
Tian (B111) 2021; 31
Pathak (B84) 2018; 68
Ng (B79) 2021
Yu (B139) 2019; 11
Crittenden (B18) 2021; 7
Mouries (B78) 2019; 71
Houghton (B42) 2019; 33
Zhang (B144) 2021; 8
Mercer (B76) 2020; 319
Jia (B46) 2019; 68
Olaniyi (B82) 2021; 106
Chávez-Carbajal (B13) 2020; 8
Zhao (B152) 2020; 32
Yan (B136) 2016; 8
Okazaki (B81) 2019; 9
Zhang (B148) 2021; 12
Mao (B73) 2019; 68
Jung (B47) 2016; 6
Lynch (B72) 2014; 10
Perino (B89) 2014; 124
Griffen (B34) 2001; 50
Sehgal (B102) 2021; 40
Schmitt (B101) 2017; 6
Yang (B135) 2021; 161
Zhang (B147) 2019; 67
Cani (B5) 2007; 56
Gu (B36) 2016; 7
Xu (B133) 2020; 12
Horne (B41) 2020; 12
Guadagnini (B35) 2019; 234
Kahn (B48) 2014; 383
Olaniyi (B83) 2021; 184
Winer (B127) 2016; 23
Karlsson (B50) 2013; 498
Wei (B126) 2020; 68
Fang (B28) 2021; 44
Saeedi (B95) 2019; 157
Zhou (B157) 2019; 569
Salguero (B96) 2019; 18
Dione (B23) 2020; 9
Zhong (B156) 2019; 47
Kieler (B54) 2019; 9
Le Chatelier (B58) 2013; 500
Xie (B130) 2020; 12
Zhou (B158) 2019; 10
Koh (B57) 2018; 175
Noureldein (B80) 2020; 64
Pedersen (B86) 2016; 535
Wan (B122) 2017; 114
Chaudhari (B12) 2021; 17
Zhao (B151) 2021; 9
Zhang (B142) 2020; 12
Mavilio (B74) 2016; 16
Li (B62) 2021; 100
Chang (B11) 2015; 6
Li (B63) 2020; 8
Watanabe (B124) 2021; 13
Zhao (B150) 2019; 66
Schertzer (B100) 2011; 60
Devlin (B22) 2015; 11
Tao (B108) 2019; 56
Saad (B94) 2016; 31
Cheng (B16) 2018; 24
Jayasudha (B45) 2020; 15
Wu (B129) 2021; 69
De Vadder (B21) 2016; 24
Duparc (B26) 2017; 66
Gu (B37) 2017; 8
Virtue (B115) 2019; 11
Wang (B117) 2020; 13
Mayneris-Perxachs (B75) 2021; 9
Giannoudaki (B32) 2019; 10
Wang (B119) 2018; 287
Cani (B6) 2008; 57
Al-Obaide (B3) 2017; 6
Zheng (B154) 2020; 5
Wollam (B128) 2019; 68
Kikuchi (B55) 2019; 10
Geurts (B31) 2015; 6
Grasset (B33) 2017; 25
Yu (B140) 2021; 33
Caron (B8) 2014; 28
Gao (B29) 2014; 118
Sato (B98) 2014; 37
Xu (B132) 2018; 238
Chimerel (B17) 2014; 9
Del Chierico (B19) 2017; 65
Duan (B24) 2021; 12
Kashtanova (B52) 2018; 6
Sanchez-Alcoholado (B97) 2017; 8
Scheithauer (B99) 2020; 11
Takagi (B107) 2020; 12
Zhao (B149) 2020; 2020
Allin (B2) 2018; 61
Liu (B68) 2021; 58
Patil (B85) 2021; 152
Kashiwagi (B51) 2021; 11
Suriano (B105) 2021; 9
Lu (B69) 2021; 11
Shih (B104) 2020; 8
Lee (B59) 2021; 9
Janssen (B44) 2018; 61
Li (B64) 2020; 12
Peng (B87) 2019; 10
Yu (B138) 2019; 11
Huang (B43) 2021; 11
Kimura (B56) 2013; 4
Zheng (B155) 2021; 9
Zhang (B146) 2021; 12
Al Bataineh (B1) 2020; 10
Zeng (B141) 2021; 70
Garidou (B30) 2015; 22
Chambers (B10) 2015; 64
Qin (B92) 2021; 11
Xie (B131) 2020; 127
Wahlström (B116) 2016; 24
Wang (B118) 2021; 18
Chen (B15) 2019
Tilg (B112) 2014; 63
Wang (B120) 2020; 104
Pérez (B88) 2019; 156
References_xml – volume: 106
  start-page: e1827
  year: 2021
  ident: B113
  article-title: Elevated Plasma Branched-Chain Amino Acid Levels Correlate With Type 2 Diabetes-Related Metabolic Disturbances
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/clinem/dgaa751
– volume: 8
  start-page: 1360
  year: 2020
  ident: B104
  article-title: Akkermansia Muciniphila is Negatively Correlated With Hemoglobin A1c in Refractory Diabetes
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8091360
– volume: 11
  start-page: 2310
  year: 2019
  ident: B4
  article-title: Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates With Changes in Circulating Metabolites in Type 2 Diabetic Db/Db Mice
  publication-title: Nutrients
  doi: 10.3390/nu11102310
– volume: 11
  year: 2021
  ident: B43
  article-title: Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy
  publication-title: Front. Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2021.646348
– volume: 162
  year: 2020
  ident: B121
  article-title: The Genus Sutterella Is a Potential Contributor to Glucose Metabolism Improvement After Roux-En-Y Gastric Bypass Surgery in T2D
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2020.108116
– volume: 10
  start-page: 723
  year: 2014
  ident: B72
  article-title: Branched-Chain Amino Acids in Metabolic Signalling and Insulin Resistance
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2014.171
– volume: 8
  year: 2021
  ident: B144
  article-title: Decreased Abundance of Akkermansia Muciniphila Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes
  publication-title: Adv. Sci. (Weinheim Baden-Wurttemberg Germany)
  doi: 10.1002/advs.202100536
– volume: 9
  start-page: 4822
  year: 2019
  ident: B54
  article-title: Diabetic Cats Have Decreased Gut Microbial Diversity and a Lack of Butyrate Producing Bacteria
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41195-0
– volume: 8
  start-page: 301
  year: 2016
  ident: B136
  article-title: Effect of Roux-En-Y Gastric Bypass Surgery on Intestinal Akkermansia Muciniphila
  publication-title: World J. Gastrointest. Surg.
  doi: 10.4240/wjgs.v8.i4.301
– volume: 10
  start-page: 4003
  year: 2019
  ident: B32
  article-title: Interleukin-36 Cytokines Alter the Intestinal Microbiome and Can Protect Against Obesity and Metabolic Dysfunction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11944-w
– volume: 5
  year: 2016
  ident: B39
  article-title: A Conserved Bacterial Protein Induces Pancreatic Beta Cell Expansion During Zebrafish Development
  publication-title: Elife
  doi: 10.7554/eLife.20145
– volume: 64
  start-page: 1744
  year: 2015
  ident: B10
  article-title: Effects of Targeted Delivery of Propionate to the Human Colon on Appetite Regulation, Body Weight Maintenance and Adiposity in Overweight Adults
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-307913
– volume: 58
  start-page: 1091
  year: 2009
  ident: B7
  article-title: Changes in Gut Microbiota Control Inflammation in Obese Mice Through a Mechanism Involving GLP-2-Driven Improvement of Gut Permeability
  publication-title: Gut
  doi: 10.1136/gut.2008.165886
– volume: 160
  start-page: 863
  year: 2021
  ident: B71
  article-title: CRIg Macrophages Prevent Gut Microbial DNA-Containing Extracellular Vesicle-Induced Tissue Inflammation and Insulin Resistance
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.10.042
– volume: 32
  year: 2020
  ident: B152
  article-title: Protein O-GlcNAc Modification Links Dietary and Gut Microbial Cues to the Differentiation of Enteroendocrine L Cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108013
– volume: 7
  start-page: 48941
  year: 2016
  ident: B36
  article-title: Deciphering Bacterial Community Changes in Zucker Diabetic Fatty Rats Based on 16S rRNA Gene Sequences Analysis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10597
– volume: 39
  start-page: 424
  year: 2015
  ident: B91
  article-title: The Short Chain Fatty Acid Propionate Stimulates GLP-1 and PYY Secretion via Free Fatty Acid Receptor 2 in Rodents
  publication-title: Int. J. Obes. (2005)
  doi: 10.1038/ijo.2014.153
– volume: 60
  start-page: 2206
  year: 2011
  ident: B100
  article-title: NOD1 Activators Link Innate Immunity to Insulin Resistance
  publication-title: Diabetes
  doi: 10.2337/db11-0004
– volume: 11
  start-page: 3262
  year: 2019
  ident: B139
  article-title: Abnormal Gut Microbiota Composition Contributes to Cognitive Dysfunction in Streptozotocin-Induced Diabetic Mice
  publication-title: Aging (Albany N. Y.)
  doi: 10.18632/aging.101978
– volume: 50
  start-page: e450
  year: 2018
  ident: B14
  article-title: Akkermansia Muciniphila-Derived Extracellular Vesicles Influence Gut Permeability Through the Regulation of Tight Junctions
  publication-title: Exp. Mol. Med.
  doi: 10.1038/emm.2017.282
– volume: 184
  start-page: 52
  year: 2021
  ident: B83
  article-title: Rescue Effect of Sodium Acetate in Diabetes Mellitus-Associated Testicular Dysfunction Is Accompanied by PCSK9 Modulation
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2021.02.004
– volume: 6
  year: 2016
  ident: B47
  article-title: Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-Induced Obese Mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep30887
– volume: 60
  start-page: 2155
  year: 2021
  ident: B134
  article-title: Genistein Ameliorates Inflammation and Insulin Resistance Through Mediation of Gut Microbiota Composition in Type 2 Diabetic Mice
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-020-02403-0
– volume: 33
  start-page: 589
  year: 2021
  ident: B143
  article-title: The Diversity of Gut Microbiota in Type 2 Diabetes With or Without Cognitive Impairment
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/s40520-020-01553-9
– volume: 10
  start-page: 167
  year: 2009
  ident: B110
  article-title: TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.08.001
– volume: 11
  start-page: 685
  year: 2015
  ident: B22
  article-title: A Biosynthetic Pathway for a Prominent Class of Microbiota-Derived Bile Acids
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1864
– volume: 23
  start-page: 413
  year: 2016
  ident: B127
  article-title: The Intestinal Immune System in Obesity and Insulin Resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.01.003
– volume: 207
  year: 2022
  ident: B49
  article-title: Adverse Associations of Different Obesity Measures and the Interactions With Long-Term Exposure to Air Pollutants With Prevalent Type 2 Diabetes Mellitus: The Henan Rural Cohort Study
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.112640
– volume: 70
  start-page: 1536
  year: 2021
  ident: B141
  article-title: FOXO1-Mediated Downregulation of RAB27B Leads to Decreased Exosome Secretion in Diabetic Kidneys
  publication-title: Diabetes
  doi: 10.2337/db20-1108
– volume: 24
  start-page: 151
  year: 2016
  ident: B21
  article-title: Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.013
– volume: 106
  start-page: 888
  year: 2017
  ident: B103
  article-title: Association Between Microbiota-Dependent Metabolite Trimethylamine-N-Oxide and Type 2 Diabetes
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.117.157107
– volume: 9
  start-page: 101
  year: 2021
  ident: B38
  article-title: Androgen-Induced Gut Dysbiosis Disrupts Glucolipid Metabolism and Endocrinal Functions in Polycystic Ovary Syndrome
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01046-5
– volume: 161
  year: 2021
  ident: B135
  article-title: Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2021.06.056
– volume: 8
  start-page: 27693
  year: 2017
  ident: B37
  article-title: ZiBuPiYin Recipe Improves Cognitive Decline by Regulating Gut Microbiota in Zucker Diabetic Fatty Rats
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14611
– volume: 359
  start-page: 1376
  year: 2018
  ident: B109
  article-title: Hyperglycemia Drives Intestinal Barrier Dysfunction and Risk for Enteric Infection
  publication-title: Science
  doi: 10.1126/science.aar3318
– volume: 28
  start-page: 1306
  year: 2014
  ident: B8
  article-title: The SIRT1 Deacetylase Protects Mice Against the Symptoms of Metabolic Syndrome
  publication-title: FASEB J.
  doi: 10.1096/fj.13-243568
– volume: 6
  start-page: 7489
  year: 2015
  ident: B11
  article-title: Ganoderma Lucidum Reduces Obesity in Mice by Modulating the Composition of the Gut Microbiota
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8489
– volume: 175
  start-page: 141
  year: 2021
  ident: B66
  article-title: Elevated Branched-Chain α-Keto Acids Exacerbate Macrophage Oxidative Stress and Chronic Inflammatory Damage in Type 2 Diabetes Mellitus
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2021.08.240
– volume: 6
  start-page: 98
  year: 2018
  ident: B52
  article-title: Gut Microbiota in Patients With Different Metabolic Statuses: Moscow Study
  publication-title: Microorganisms
  doi: 10.3390/microorganisms6040098
– volume: 12
  start-page: 1
  year: 2020
  ident: B142
  article-title: Phlorizin Ameliorates Obesity-Associated Endotoxemia and Insulin Resistance in High-Fat Diet-Fed Mice by Targeting the Gut Microbiota and Intestinal Barrier Integrity
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2020.1842990
– volume: 12
  start-page: 8288
  year: 2021
  ident: B146
  article-title: Lactobacillus Casei LC89 Exerts Antidiabetic Effects Through Regulating Hepatic Glucagon Response and Gut Microbiota in Type 2 Diabetic Mice
  publication-title: Food Funct.
  doi: 10.1039/d1fo00882j
– volume: 9
  start-page: 867
  year: 2019
  ident: B81
  article-title: Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37242-x
– volume-title: Gut
  year: 2021
  ident: B79
  article-title: Microbiota Engraftment After Faecal Microbiota Transplantation in Obese Subjects With Type 2 Diabetes: A 24-Week, Double-Blind, Randomised Controlled Trial
– volume: 6
  start-page: 86
  year: 2017
  ident: B3
  article-title: Gut Microbiota-Dependent Trimethylamine-N-Oxide and Serum Biomarkers in Patients With T2DM and Advanced CKD
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm6090086
– volume: 8
  start-page: 1481
  year: 2020
  ident: B63
  article-title: Correlation Between Alterations of Gut Microbiota and miR-122-5p Expression in Patients With Type 2 Diabetes Mellitus
  publication-title: Ann. Trans. Med.
  doi: 10.21037/atm-20-6717
– volume: 238
  start-page: 231
  year: 2018
  ident: B132
  article-title: Sodium Butyrate Supplementation Ameliorates Diabetic Inflammation in Db/Db Mice
  publication-title: J. Endocrinol.
  doi: 10.1530/joe-18-0137
– volume: 100
  start-page: 1387
  year: 2021
  ident: B62
  article-title: Gut Microbiota May Mediate the Influence of Periodontitis on Prediabetes
  publication-title: J. Dental Res.
  doi: 10.1177/00220345211009449
– volume: 4
  start-page: 1829
  year: 2013
  ident: B56
  article-title: The Gut Microbiota Suppresses Insulin-Mediated Fat Accumulation via the Short-Chain Fatty Acid Receptor GPR43
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2852
– volume: 124
  start-page: 5424
  year: 2014
  ident: B89
  article-title: TGR5 Reduces Macrophage Migration Through mTOR-Induced C/Ebpβ Differential Translation
  publication-title: J. Clin. Invest.
  doi: 10.1172/jci76289
– volume: 56
  start-page: 1761
  year: 2007
  ident: B5
  article-title: Metabolic Endotoxemia Initiates Obesity and Insulin Resistance
  publication-title: Diabetes
  doi: 10.2337/db06-1491
– volume: 12
  start-page: 6363
  year: 2021
  ident: B61
  article-title: Lactobacillus Plantarum HAC01 Ameliorates Type 2 Diabetes in High-Fat Diet and Streptozotocin-Induced Diabetic Mice in Association With Modulating the Gut Microbiota
  publication-title: Food Funct.
  doi: 10.1039/d1fo00698c
– volume: 11
  start-page: 18398
  year: 2021
  ident: B51
  article-title: Porphyromonas Gingivalis Induces Entero-Hepatic Metabolic Derangements With Alteration of Gut Microbiota in a Type 2 Diabetes Mouse Model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-97868-2
– volume: 64
  start-page: 29
  year: 2020
  ident: B80
  article-title: Butyrate Modulates Diabetes-Linked Gut Dysbiosis: Epigenetic and Mechanistic Modifications
  publication-title: J. Mol. Endocrinol.
  doi: 10.1530/jme-19-0132
– volume: 68
  start-page: 1197
  year: 2019
  ident: B73
  article-title: Deficiency of ZnT8 Promotes Adiposity and Metabolic Dysfunction by Increasing Peripheral Serotonin Production
  publication-title: Diabetes
  doi: 10.2337/db18-1321
– start-page: 51
  year: 2019
  ident: B15
  article-title: The Alteration of Gut Microbiota in Newly Diagnosed Type 2 Diabetic Patients
  publication-title: Nutrition
  doi: 10.1016/j.nut.2018.11.019
– volume: 25
  start-page: 1075
  year: 2017
  ident: B33
  article-title: A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance Through an Enteric NO-Dependent and Gut-Brain Axis Mechanism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.04.013
– volume: 68
  start-page: 5107
  year: 2020
  ident: B126
  article-title: Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic Db/Db Mice
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c00605
– volume: 31
  start-page: 77
  year: 2020
  ident: B67
  article-title: Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.11.001
– volume: 8
  year: 2013
  ident: B145
  article-title: Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071108
– volume: 12
  start-page: 2996
  year: 2020
  ident: B107
  article-title: Changes in the Gut Microbiota Are Associated With Hypertension, Hyperlipidemia, and Type 2 Diabetes Mellitus in Japanese Subjects
  publication-title: Nutrients
  doi: 10.3390/nu12102996
– volume: 10
  start-page: 3650
  year: 2019
  ident: B70
  article-title: Gut-Associated IgA Immune Cells Regulate Obesity-Related Insulin Resistance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11370-y
– volume: 53
  start-page: 991
  year: 2008
  ident: B60
  article-title: Association Between Polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and Type 2 Diabetes in the Korean Population
  publication-title: J. Hum. Genet.
  doi: 10.1007/s10038-008-0341-8
– volume: 40
  year: 2021
  ident: B102
  article-title: LncRNA VEAL2 Regulates PRKCB2 to Modulate Endothelial Permeability in Diabetic Retinopathy
  publication-title: EMBO J.
  doi: 10.15252/embj.2020107134
– volume: 68
  start-page: 1747
  year: 2019
  ident: B46
  article-title: Assessment of Causal Direction Between Gut Microbiota-Dependent Metabolites and Cardiometabolic Health: A Bidirectional Mendelian Randomization Analysis
  publication-title: Diabetes
  doi: 10.2337/db19-0153
– volume: 12
  start-page: 642
  year: 2021
  ident: B148
  article-title: TXNIP, a Novel Key Factor to Cause Schwann Cell Dysfunction in Diabetic Peripheral Neuropathy, Under the Regulation of PI3K/Akt Pathway Inhibition-Induced DNMT1 and DNMT3a Overexpression
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-021-03930-2
– volume: 56
  start-page: 581
  year: 2019
  ident: B108
  article-title: Understanding the Gut-Kidney Axis Among Biopsy-Proven Diabetic Nephropathy, Type 2 Diabetes Mellitus and Healthy Controls: An Analysis of the Gut Microbiota Composition
  publication-title: Acta Diabetol.
  doi: 10.1007/s00592-019-01316-7
– volume: 12
  start-page: 224
  year: 2020
  ident: B133
  article-title: Faecalibacterium Prausnitzii-Derived Microbial Anti-Inflammatory Molecule Regulates Intestinal Integrity in Diabetes Mellitus Mice via Modulating Tight Junction Protein Expression
  publication-title: J. Diabetes.
  doi: 10.1111/1753-0407.12986
– volume: 12
  start-page: 7172
  year: 2021
  ident: B24
  article-title: CRIg on Liver Macrophages Clears Pathobionts and Protects Against Alcoholic Liver Disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27385-3
– volume: 19
  start-page: 295
  year: 1970
  ident: B137
  article-title: Hydrolysis of Conjugated Bile Acids by Cell-Free Extracts From Aerobic Bacteria
  publication-title: Appl. Microbiol.
  doi: 10.1128/am.19.2.295-300.1970
– volume: 490
  start-page: 55
  year: 2012
  ident: B93
  article-title: A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 175
  start-page: 947
  year: 2018
  ident: B57
  article-title: Microbially Produced Imidazole Propionate Impairs Insulin Signaling Through Mtorc1
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.055
– volume: 12
  start-page: 17436
  year: 2020
  ident: B130
  article-title: Jinmaitong Ameliorates Diabetic Peripheral Neuropathy in Streptozotocin-Induced Diabetic Rats by Modulating Gut Microbiota and Neuregulin 1
  publication-title: Aging (Albany N. Y.)
  doi: 10.18632/aging.103750
– volume: 535
  start-page: 376
  year: 2016
  ident: B86
  article-title: Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity
  publication-title: Nature
  doi: 10.1038/nature18646
– volume: 127
  year: 2020
  ident: B131
  article-title: Protective Effect of Quercetin on Streptozotocin-Induced Diabetic Peripheral Neuropathy Rats Through Modulating Gut Microbiota and Reactive Oxygen Species Level
  publication-title: BioMed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110147
– volume: 10
  year: 2019
  ident: B158
  article-title: Dynamic Development of Fecal Microbiome During the Progression of Diabetes Mellitus in Zucker Diabetic Fatty Rats
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00232
– volume: 8
  start-page: 94
  year: 2020
  ident: B13
  article-title: Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship With the Host
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8010094
– volume: 16
  start-page: 731
  year: 2016
  ident: B74
  article-title: A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.06.027
– volume: 18
  start-page: 4
  year: 2021
  ident: B118
  article-title: Gut Microbiome, Liver Immunology, and Liver Diseases
  publication-title: Cell. Mol. Immunol..
  doi: 10.1038/s41423-020-00592-6
– volume: 50
  start-page: 63
  year: 2001
  ident: B34
  article-title: A Genetic Defect in Beta-Cell Gene Expression Segregates Independently From the Fa Locus in the ZDF Rat
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.1.63
– volume: 287
  start-page: 10
  year: 2018
  ident: B119
  article-title: Diabetic Cognitive Dysfunction Is Associated With Increased Bile Acids in Liver and Activation of Bile Acid Signaling in Intestine
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2018.01.006
– volume: 157
  year: 2019
  ident: B95
  article-title: Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results From the International Diabetes Federation Diabetes Atlas, 9(Th) Edition
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2019.107843
– volume: 9
  year: 2021
  ident: B151
  article-title: Single-Cell Transcriptomics Reveals Endothelial Plasticity During Diabetic Atherogenesis
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.689469
– volume: 33
  start-page: 905
  year: 2021
  ident: B140
  article-title: The Adverse Metabolic Effects of Branched-Chain Amino Acids are Mediated by Isoleucine and Valine
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.03.025
– volume: 156
  start-page: 339
  year: 2019
  ident: B88
  article-title: Interleukin-17/Interleukin-17 Receptor Axis Elicits Intestinal Neutrophil Migration, Restrains Gut Dysbiosis and Lipopolysaccharide Translocation in High-Fat Diet-Induced Metabolic Syndrome Model
  publication-title: Immunology
  doi: 10.1111/imm.13028
– volume: 71
  start-page: 1216
  year: 2019
  ident: B78
  article-title: Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2019.08.005
– volume: 12
  start-page: 25956
  year: 2020
  ident: B64
  article-title: Periodontitis in Elderly Patients With Type 2 Diabetes Mellitus: Impact on Gut Microbiota and Systemic Inflammation
  publication-title: Aging
  doi: 10.18632/aging.202174
– volume: 10
  start-page: 9624
  year: 2020
  ident: B1
  article-title: Revealing Links Between Gut Microbiome and Its Fungal Community in Type 2 Diabetes Mellitus Among Emirati Subjects: A Pilot Study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66598-2
– volume: 18
  start-page: 3461
  year: 2019
  ident: B96
  article-title: Dysbiosis of Gram-Negative Gut Microbiota and the Associated Serum Lipopolysaccharide Exacerbates Inflammation in Type 2 Diabetic Patients With Chronic Kidney Disease
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2019.7943
– volume: 13
  start-page: 2983
  year: 2021
  ident: B124
  article-title: Supplementation of 1-Kestose Modulates the Gut Microbiota Composition to Ameliorate Glucose Metabolism in Obesity-Prone Hosts
  publication-title: Nutrients
  doi: 10.3390/nu13092983
– volume: 44
  start-page: 2738
  year: 2021
  ident: B28
  article-title: Characteristics of the Gut Microbiota and Metabolism in Patients With Latent Autoimmune Diabetes in Adults: A Case-Control Study
  publication-title: Diabetes Care
  doi: 10.2337/dc20-2975
– volume: 63
  start-page: 1513
  year: 2014
  ident: B112
  article-title: Microbiota and Diabetes: An Evolving Relationship
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-306928
– volume: 66
  start-page: 620
  year: 2017
  ident: B26
  article-title: Hepatocyte MyD88 Affects Bile Acids, Gut Microbiota and Metabolome Contributing to Regulate Glucose and Lipid Metabolism
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310904
– volume: 5
  year: 2020
  ident: B154
  article-title: Gestational Diabetes Mellitus Is Associated With Reduced Dynamics of Gut Microbiota During the First Half of Pregnancy
  publication-title: mSystems
  doi: 10.1128/mSystems.00109-20
– volume: 9
  start-page: 2705
  year: 2020
  ident: B23
  article-title: Mgll Knockout Mouse Resistance to Diet-Induced Dysmetabolism Is Associated With Altered Gut Microbiota
  publication-title: Cells
  doi: 10.3390/cells9122705
– volume: 11
  year: 2021
  ident: B92
  article-title: Intestinal Microbiota Play an Important Role in the Treatment of Type I Diabetes in Mice With BefA Protein
  publication-title: Front. Cell. Infect Microbiol.
  doi: 10.3389/fcimb.2021.719542
– volume: 31
  start-page: 283
  year: 2016
  ident: B94
  article-title: Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance
  publication-title: Physiol. (Bethesda)
  doi: 10.1152/physiol.00041.2015
– volume: 9
  start-page: 1202
  year: 2014
  ident: B17
  article-title: Bacterial Metabolite Indole Modulates Incretin Secretion From Intestinal Enteroendocrine L Cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.032
– volume: 11
  start-page: 4728
  year: 2021
  ident: B69
  article-title: GPR43 Deficiency Protects Against Podocyte Insulin Resistance in Diabetic Nephropathy Through the Restoration of Ampkα Activity
  publication-title: Theranostics
  doi: 10.7150/thno.56598
– volume: 104
  start-page: 7143
  year: 2020
  ident: B120
  article-title: A Comparative Study of Microbial Community and Functions of Type 2 Diabetes Mellitus Patients With Obesity and Healthy People
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-020-10689-7
– volume: 23
  start-page: 107
  year: 2017
  ident: B90
  article-title: A Purified Membrane Protein From Akkermansia Muciniphila or the Pasteurized Bacterium Improves Metabolism in Obese and Diabetic Mice
  publication-title: Nat. Med.
  doi: 10.1038/nm.4236
– volume: 61
  start-page: 810
  year: 2018
  ident: B2
  article-title: Aberrant Intestinal Microbiota in Individuals With Prediabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-018-4550-1
– volume: 569
  start-page: 663
  year: 2019
  ident: B157
  article-title: Longitudinal Multi-Omics of Host-Microbe Dynamics in Prediabetes
  publication-title: Nature
  doi: 10.1038/s41586-019-1236-x
– volume: 9
  start-page: 104
  year: 2021
  ident: B75
  article-title: Iron Status Influences Non-Alcoholic Fatty Liver Disease in Obesity Through the Gut Microbiome
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01052-7
– volume: 6
  start-page: 61
  year: 2017
  ident: B101
  article-title: Intestinal Invalidation of the Glucose Transporter GLUT2 Delays Tissue Distribution of Glucose and Reveals an Unexpected Role in Gut Homeostasis
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2016.10.008
– volume: 68
  start-page: 1574
  year: 2018
  ident: B84
  article-title: Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-Protein Bile Acid Receptor-1 Signaling to Improve Metabolism
  publication-title: Hepatology
  doi: 10.1002/hep.29857
– volume: 6
  start-page: 6495
  year: 2015
  ident: B31
  article-title: Adipose Tissue NAPE-PLD Controls Fat Mass Development by Altering the Browning Process and Gut Microbiota
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7495
– volume: 11
  year: 2019
  ident: B115
  article-title: The Gut Microbiota Regulates White Adipose Tissue Inflammation and Obesity via a Family of microRNAs
  publication-title: Sci. Trans. Med.
  doi: 10.1126/scitranslmed.aav1892
– volume: 8
  year: 2017
  ident: B97
  article-title: Role of Gut Microbiota on Cardio-Metabolic Parameters and Immunity in Coronary Artery Disease Patients With and Without Type-2 Diabetes Mellitus
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01936
– volume: 18
  start-page: 18
  year: 2020
  ident: B77
  article-title: The Potential Therapeutic Effects of the Gut Microbiome Manipulation by Synbiotic Containing-Lactobacillus Plantarum on Neuropsychological Performance of Diabetic Rats
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-019-02169-y
– volume: 25
  start-page: 1063
  year: 2017
  ident: B9
  article-title: Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.03.021
– volume: 500
  start-page: 541
  year: 2013
  ident: B58
  article-title: Richness of Human Gut Microbiome Correlates With Metabolic Markers
  publication-title: Nature
  doi: 10.1038/nature12506
– volume: 267
  year: 2021
  ident: B159
  article-title: Catalpol Ameliorates Diabetes-Induced Testicular Injury and Modulates Gut Microbiota
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.118881
– volume: 114
  start-page: 10196
  year: 2017
  ident: B122
  article-title: Proteoliposome-Based Full-Length ZnT8 Self-Antigen for Type 1 Diabetes Diagnosis on a Plasmonic Platform
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1711169114
– volume: 15
  year: 2020
  ident: B45
  article-title: Gut Mycobiomes are Altered in People With Type 2 Diabetes Mellitus and Diabetic Retinopathy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0243077
– volume: 37
  start-page: 2343
  year: 2014
  ident: B98
  article-title: Gut Dysbiosis and Detection of “Live Gut Bacteria” in Blood of Japanese Patients With Type 2 Diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc13-2817
– volume: 383
  start-page: 1068
  year: 2014
  ident: B48
  article-title: Pathophysiology and Treatment of Type 2 Diabetes: Perspectives on the Past, Present, and Future
  publication-title: Lancet
  doi: 10.1016/s0140-6736(13)62154-6
– volume: 17
  start-page: 20
  year: 2021
  ident: B12
  article-title: Bariatric Surgery Reveals a Gut-Restricted TGR5 Agonist With Anti-Diabetic Effects
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0604-z
– volume: 61
  start-page: 1447
  year: 2018
  ident: B44
  article-title: Loss of Angiopoietin-Like 4 (ANGPTL4) in Mice With Diet-Induced Obesity Uncouples Visceral Obesity From Glucose Intolerance Partly via the Gut Microbiota
  publication-title: Diabetologia
  doi: 10.1007/s00125-018-4583-5
– volume: 66
  start-page: 526
  year: 2019
  ident: B150
  article-title: Comprehensive Relationships Between Gut Microbiome and Faecal Metabolome in Individuals With Type 2 Diabetes and Its Complications
  publication-title: Endocrine
  doi: 10.1007/s12020-019-02103-8
– volume: 9
  start-page: 145
  year: 2021
  ident: B155
  article-title: Depletion of Acetate-Producing Bacteria From the Gut Microbiota Facilitates Cognitive Impairment Through the Gut-Brain Neural Mechanism in Diabetic Mice
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01088-9
– volume: 9
  year: 2021
  ident: B59
  article-title: High-Fat-Diet-Induced Oxidative Stress Linked to the Increased Colonization of Lactobacillus Sakei in an Obese Population
  publication-title: Microbiol. Spectr.
  doi: 10.1128/Spectrum.00074-21
– volume: 13
  start-page: 835
  year: 2020
  ident: B117
  article-title: Phocea, Pseudoflavonifractor and Lactobacillus Intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus
  publication-title: Diabetes Metab. Syndr. Obes.
  doi: 10.2147/dmso.s240728
– volume: 156
  start-page: 84
  year: 2014
  ident: B20
  article-title: Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.016
– volume: 319
  start-page: G157
  year: 2020
  ident: B76
  article-title: Xenometabolite Signatures in the UC Davis Type 2 Diabetes Mellitus Rat Model Revealed Using a Metabolomics Platform Enriched With Microbe-Derived Metabolites. American Journal of Physiology
  publication-title: Gastrointest. Liver. Physiol.
  doi: 10.1152/ajpgi.00105.2020
– volume: 24
  year: 2018
  ident: B16
  article-title: TRIM31 Deficiency Is Associated With Impaired Glucose Metabolism and Disrupted Gut Microbiota in Mice
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00024
– volume: 498
  start-page: 99
  year: 2013
  ident: B50
  article-title: Gut Metagenome in European Women With Normal, Impaired and Diabetic Glucose Control
  publication-title: Nature
  doi: 10.1038/nature12198
– volume: 10
  start-page: 1835
  year: 2019
  ident: B55
  article-title: Gut Microbiome-Derived Phenyl Sulfate Contributes to Albuminuria in Diabetic Kidney Disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09735-4
– volume: 67
  start-page: 7694
  year: 2019
  ident: B147
  article-title: Sodium Butyrate Improves Liver Glycogen Metabolism in Type 2 Diabetes Mellitus
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b02083
– volume: 234
  year: 2019
  ident: B35
  article-title: Microbiota Determines Insulin Sensitivity in TLR2-KO Mice
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.116793
– volume: 33
  start-page: 1887
  year: 2019
  ident: B42
  article-title: Gut Microbiome Catabolites as Novel Modulators of Muscle Cell Glucose Metabolism
  publication-title: FASEB J.
  doi: 10.1096/fj.201801209R
– volume: 11
  start-page: 10454
  year: 2019
  ident: B138
  article-title: Abnormal Gut Microbiota Composition Contributes to the Development of Type 2 Diabetes Mellitus in Db/Db Mice
  publication-title: Aging (Albany N. Y.)
  doi: 10.18632/aging.102469
– volume: 9
  start-page: 147
  year: 2021
  ident: B105
  article-title: Novel Insights Into the Genetically Obese (Ob/Ob) and Diabetic (Db/Db) Mice: Two Sides of the Same Coin
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01097-8
– volume: 47
  start-page: 373
  year: 2019
  ident: B156
  article-title: Distinct Gut Metagenomics and Metaproteomics Signatures in Prediabetics and Treatment-Naïve Type 2 Diabetics
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.08.048
– volume: 152
  start-page: 1998
  year: 2017
  ident: B40
  article-title: Gut-Specific Delivery of T-Helper 17 Cells Reduces Obesity and Insulin Resistance in Mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.02.016
– volume: 328
  start-page: 228
  year: 2010
  ident: B114
  article-title: Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5
  publication-title: Science (N.Y. N.Y.)
  doi: 10.1126/science.1179721
– volume: 329
  start-page: 386
  year: 2005
  ident: B53
  article-title: Bile Acids Promote Glucagon-Like Peptide-1 Secretion Through TGR5 in a Murine Enteroendocrine Cell Line STC-1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.01.139
– volume: 15
  start-page: 80
  year: 2018
  ident: B125
  article-title: Intermittent Administration of a Fasting-Mimicking Diet Intervenes in Diabetes Progression, Restores β Cells and Reconstructs Gut Microbiota in Mice
  publication-title: Nutr. Metab.
  doi: 10.1186/s12986-018-0318-3
– volume: 69
  start-page: 8797
  year: 2021
  ident: B129
  article-title: Lactobacillus Rhamnosus LRa05 Ameliorate Hyperglycemia Through a Regulating Glucagon-Mediated Signaling Pathway and Gut Microbiota in Type 2 Diabetic Mice
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/acs.jafc.1c02925
– volume: 110
  start-page: 9066
  year: 2013
  ident: B27
  article-title: Cross-Talk Between Akkermansia Muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1219451110
– volume: 69
  start-page: 1164
  year: 2020
  ident: B153
  article-title: Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling
  publication-title: Diabetes
  doi: 10.2337/db19-0920
– volume: 11
  start-page: 855
  year: 2020
  ident: B65
  article-title: Gut Microbiota Mediates Intermittent-Fasting Alleviation of Diabetes-Induced Cognitive Impairment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14676-4
– volume: 10
  year: 2019
  ident: B87
  article-title: Integrated 16s rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-Obese Type 2 Diabetic Goto-Kakizaki Rats
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.03141
– volume: 12
  start-page: 3557
  year: 2020
  ident: B41
  article-title: High Fat-High Fructose Diet-Induced Changes in the Gut Microbiota Associated With Dyslipidemia in Syrian Hamsters
  publication-title: Nutrients
  doi: 10.3390/nu12113557
– volume: 58
  start-page: 221
  year: 2021
  ident: B68
  article-title: Elevated Plasma Trimethylamine-N-Oxide Levels Are Associated With Diabetic Retinopathy
  publication-title: Acta Diabetol.
  doi: 10.1007/s00592-020-01610-9
– volume: 152
  year: 2021
  ident: B85
  article-title: Glycation of Gut Proteins Initiates Microbial Dysbiosis and can Promote Establishment of Diabetes in Experimental Animals
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2020.104589
– volume: 379
  start-page: 2279
  year: 2012
  ident: B106
  article-title: Prediabetes: A High-Risk State for Diabetes Development
  publication-title: Lancet
  doi: 10.1016/s0140-6736(12)60283-9
– volume: 439
  start-page: 484
  year: 2006
  ident: B123
  article-title: Bile Acids Induce Energy Expenditure by Promoting Intracellular Thyroid Hormone Activation
  publication-title: Nature
  doi: 10.1038/nature04330
– volume: 68
  start-page: 1415
  year: 2019
  ident: B128
  article-title: Microbiota-Produced N-Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance
  publication-title: Diabetes
  doi: 10.2337/db18-1307
– volume: 24
  start-page: 41
  year: 2016
  ident: B116
  article-title: Intestinal Crosstalk Between Bile Acids and Microbiota and Its Impact on Host Metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.005
– volume: 57
  start-page: 1470
  year: 2008
  ident: B6
  article-title: Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice
  publication-title: Diabetes
  doi: 10.2337/db07-1403
– volume: 2020
  year: 2020
  ident: B149
  article-title: Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2020/1904609
– volume: 118
  start-page: 476
  year: 2014
  ident: B29
  article-title: Dietary Trimethylamine N-Oxide Exacerbates Impaired Glucose Tolerance in Mice Fed a High Fat Diet
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2014.03.001
– volume: 7
  year: 2021
  ident: B18
  article-title: Prostaglandin E(2) Promotes Intestinal Inflammation via Inhibiting Microbiota-Dependent Regulatory T Cells
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd7954
– volume: 73
  start-page: 71
  year: 2021
  ident: B25
  article-title: Alteration of Gut Microbial Profile in Patients With Diabetic Nephropathy
  publication-title: Endocrine
  doi: 10.1007/s12020-021-02721-1
– volume: 11
  year: 2020
  ident: B99
  article-title: Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.571731
– volume: 31
  start-page: 1454
  year: 2021
  ident: B111
  article-title: Gut Microbiota Dysbiosis in Stable Coronary Artery Disease Combined With Type 2 Diabetes Mellitus Influences Cardiovascular Prognosis
  publication-title: Nutr. Metab. Cardiovasc. Dis.
  doi: 10.1016/j.numecd.2021.01.007
– volume: 65
  start-page: 451
  year: 2017
  ident: B19
  article-title: Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta-Omics-Based Approach
  publication-title: Hepatology
  doi: 10.1002/hep.28572
– volume: 22
  start-page: 100
  year: 2015
  ident: B30
  article-title: The Gut Microbiota Regulates Intestinal CD4 T Cells Expressing Rorγt and Controls Metabolic Disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.06.001
– volume: 106
  start-page: 69
  year: 2021
  ident: B82
  article-title: Repression of HDAC5 by Acetate Restores Hypothalamic-Pituitary-Ovarian Function in Type 2 Diabetes Mellitus
  publication-title: Reprod. Toxicol. (Elmsford N.Y.)
  doi: 10.1016/j.reprotox.2021.10.008
SSID ssj0000702893
Score 2.6197138
SecondaryResourceType review_article
Snippet Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 834485
SubjectTerms Cellular and Infection Microbiology
glucose metabolism
gut microbiota
insulin resistance
pathogenesis
type 2 diabetes mellitus
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA4iFLyItv4YbUsKnoTR-ZFkkl6KLbUqrHhQ8BaSSYIL6yju7MH_vu8l47IrYi-9zmSY8OUl733k8X2EHEgfrFPAVNuCu5wZ63ILeSlXgWHKcG0ZLVlGl-Lshl3c8tsFqy_sCUvywAm4Y2MbBueJqx2U_oYr5VTbWFVIiDRhjcXTF3LeApmKZ3CDN2h1usYEFqaOQzu-t8AHq-oIrSXQO3khEUW9_reKzNe9kgvJ53SDrA9VIz1Js90kK777SD4kH8nnT-THn1lPR-OkqdSb7_Sko-f3sbLueno1MVBX03FHkXTSig5dMFM6QjXOfjbdIjenv69_neWDM0LeMsH7PECW5SEAGUGcZdV6gCcA8-Clj4JCznInBPdWKm5aCTvPs1C44ArfGMPqbbLaPXR-l9AQeKikQ6InmRdeirqpa-VYaUJROJ-R4gUm3Q6y4eheMdFAHxBZHZHViKxOyGbkcP7JY9LMeG_wT8R-PhDlruMDCAI9BIH-VxBk5NvLymnYHnjnYTr_MJvqStRIeVlZZmQnreT8V1B7sgoYcEaapTVemsvym258FyW4pUQnL7H3Pya_T9YQD2wFL_lnsto_zfwXqHR6-zUG9V9KJfuP
  priority: 102
  providerName: Directory of Open Access Journals
Title Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus
URI https://www.ncbi.nlm.nih.gov/pubmed/35242721
https://www.proquest.com/docview/2636144411
https://pubmed.ncbi.nlm.nih.gov/PMC8886906
https://doaj.org/article/ab74eb1d3d144a599d9c7b9087876bab
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OE8EX8dv6cUTwSejZjyRNBDlO8TyFFR9cuLeQNIku7HV1twvef-9M2l1cWcTXNm2amUx-82vC_ABeqBCd18hU20L4nFvnc4e4lOvICTJ8WyZJlslneT7lny7ExQFs5K1GA672UjvSk5ou58e_fl6dYMC_IcaJePsqtrNLh1Svqo5JNUKJa3AdgamhOJ2M2X5amBvaVqM9Z8REkVdaqWGfc_9bdpAqFfTfl4X-fZjyD3Q6uw23xrSSnQ7z4A4chO4u3BiEJq_uwcmHdc8ms6HoUm9fs9OOfbxMo-569mVuMfFms44RK2UVG4_JrNiEynX269V9mJ69__ruPB-lE_KWS9HnEWFYxIhshRyhqjbUvoxITUQZUsUh74SXUgSntLCtwtAMPBY--iI01vL6ARx2iy48AhajiJXyxAQVDzIoWTd1rT0vbSwKHzIoNmYy7VhXnOQt5gb5BVnWJMsasqwZLJvBy-0jP4aiGv9q_JZsv21I9bDThcXymxnDy1jXcEQdj6Pk3AqtvW4bpwuF65F01mXwfOM5g_FDmyK2C4v1ylSyJk7MyzKDh4Mnt11hcsorpMgZNDs-3vmW3Tvd7Huq0a0USX3Jx__R7xO4ScOlo-CleAqH_XIdnmGm07uj9IfgKM3i34Lr-yY
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+Microbiota%3A+An+Important+Player+in+Type+2+Diabetes+Mellitus&rft.jtitle=Frontiers+in+cellular+and+infection+microbiology&rft.au=Zhou%2C+Zheng&rft.au=Sun%2C+Bao&rft.au=Yu%2C+Dongsheng&rft.au=Zhu%2C+Chunsheng&rft.date=2022-02-15&rft.issn=2235-2988&rft.eissn=2235-2988&rft.volume=12&rft.spage=834485&rft_id=info:doi/10.3389%2Ffcimb.2022.834485&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2235-2988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2235-2988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2235-2988&client=summon