Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus
Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and tr...
Saved in:
Published in | Frontiers in cellular and infection microbiology Vol. 12; p. 834485 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets. |
---|---|
AbstractList | Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets. Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets. |
Author | Sun, Bao Zhou, Zheng Yu, Dongsheng Zhu, Chunsheng |
AuthorAffiliation | 1 Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China 3 Institution of Clinical Pharmacy, Central South University , Changsha , China 2 Department of Pharmacy, The Second Xiangya Hospital, Central South University , Changsha , China |
AuthorAffiliation_xml | – name: 2 Department of Pharmacy, The Second Xiangya Hospital, Central South University , Changsha , China – name: 1 Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China – name: 3 Institution of Clinical Pharmacy, Central South University , Changsha , China |
Author_xml | – sequence: 1 givenname: Zheng surname: Zhou fullname: Zhou, Zheng – sequence: 2 givenname: Bao surname: Sun fullname: Sun, Bao – sequence: 3 givenname: Dongsheng surname: Yu fullname: Yu, Dongsheng – sequence: 4 givenname: Chunsheng surname: Zhu fullname: Zhu, Chunsheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35242721$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtPHDEUha2IKDzCD0gTuUyzG7_HkyIRIgFWAkFBastPYjQz3tieSPvv42UJAoq4sXV97neu7jkEe1OaPAAfMFpSKvvPwcbRLAkiZCkpY5K_AQeEUL4gvZR7z9774LiUe9ROh4js6TuwTzlhpCP4AHw7nyu8ijYnE1PVX-DJBFfjOuWqpwpvBr3xGcYJ3m7WHhL4PWrjqy_wyg9DrHN5D94GPRR__HgfgZ9nP25PLxaX1-er05PLhWWC10XAkvMQBBGuR0IS66nDoeOUYy8Rw9wZ7oTg3sieaytRq7OAXHDId1ozegRWO65L-l6tcxx13qiko3oopHyndK7RDl5p0zFvsGsOjGne9663nemR7GQnjDaN9XXHWs9m9M76qWY9vIC-_JniL3WX_igppWjjN8CnR0BOv2dfqhpjsW0jevJpLooIKpo3w7hJPz73ejL5l0AT4J2gRVBK9uFJgpHaBq0eglbboNUu6NbTveqxseoa03bcOPyn8y_7xK1M |
CitedBy_id | crossref_primary_10_1007_s11695_024_07378_z crossref_primary_10_3389_fnut_2025_1508381 crossref_primary_10_1007_s00592_023_02217_6 crossref_primary_10_1128_msystems_00573_23 crossref_primary_10_1038_s41581_022_00647_z crossref_primary_10_3390_biomedicines11041097 crossref_primary_10_1007_s12602_024_10353_w crossref_primary_10_7717_peerj_17891 crossref_primary_10_3748_wjg_v29_i1_19 crossref_primary_10_1038_s41598_025_90854_y crossref_primary_10_1007_s13668_024_00523_1 crossref_primary_10_3390_nu16223935 crossref_primary_10_2147_DMSO_S412872 crossref_primary_10_3390_microorganisms12112256 crossref_primary_10_1080_14779072_2025_2463366 crossref_primary_10_3389_fimmu_2024_1434804 crossref_primary_10_3390_nu15245080 crossref_primary_10_4239_wjd_v14_i10_1502 crossref_primary_10_1038_s41366_023_01369_3 crossref_primary_10_3389_fpubh_2023_1255059 crossref_primary_10_4239_wjd_v15_i11_2182 crossref_primary_10_3389_frmbi_2024_1359580 crossref_primary_10_3389_fendo_2023_1327495 crossref_primary_10_3390_biology13080641 crossref_primary_10_5312_wjo_v16_i3_102274 crossref_primary_10_1128_msystems_00532_24 crossref_primary_10_3389_fgene_2024_1325401 crossref_primary_10_3389_fmolb_2023_1224982 crossref_primary_10_1007_s40122_024_00602_9 crossref_primary_10_1210_endrev_bnae033 crossref_primary_10_3389_fmed_2025_1555077 crossref_primary_10_3389_fendo_2023_1156757 crossref_primary_10_3390_ijms24086978 crossref_primary_10_3389_fendo_2024_1392306 crossref_primary_10_1080_10408398_2022_2110035 crossref_primary_10_1186_s12866_023_02852_7 crossref_primary_10_1002_bab_2518 crossref_primary_10_1136_gutjnl_2023_331441 crossref_primary_10_29219_fnr_v67_9725 crossref_primary_10_1515_jbcpp_2024_0043 crossref_primary_10_3390_medicines10090053 crossref_primary_10_1089_ars_2022_0028 crossref_primary_10_3389_fgene_2023_1184473 crossref_primary_10_3390_ijms241713507 crossref_primary_10_3389_fimmu_2023_1274654 crossref_primary_10_1039_D4MD00023D crossref_primary_10_3390_ijms25169118 crossref_primary_10_1007_s11596_024_2957_0 crossref_primary_10_1021_acs_jproteome_4c00507 crossref_primary_10_3390_nu16183134 crossref_primary_10_4103_jod_jod_157_24 crossref_primary_10_1186_s12886_023_03118_6 crossref_primary_10_1007_s11154_023_09816_2 crossref_primary_10_3390_biomedicines12112529 crossref_primary_10_1016_j_ijbiomac_2025_142145 crossref_primary_10_3390_ijerph21020237 crossref_primary_10_3390_ijms241713338 crossref_primary_10_1186_s13020_023_00854_1 crossref_primary_10_3390_nu16223951 crossref_primary_10_1055_a_2273_5602 crossref_primary_10_3389_fphar_2025_1520439 crossref_primary_10_1021_acs_jafc_1c07851 crossref_primary_10_1080_14789450_2023_2279984 crossref_primary_10_4239_wjd_v16_i3_103032 crossref_primary_10_1007_s12672_024_01662_1 crossref_primary_10_2147_DMSO_S377856 crossref_primary_10_3389_fmicb_2024_1355396 crossref_primary_10_1080_10408398_2023_2230287 crossref_primary_10_1111_nyas_15058 crossref_primary_10_1186_s12982_024_00213_x crossref_primary_10_14341_DM13196 crossref_primary_10_3389_fendo_2023_1141516 crossref_primary_10_3390_ijms252212455 crossref_primary_10_1007_s00394_023_03168_y crossref_primary_10_1007_s12602_024_10377_2 crossref_primary_10_3389_fcimb_2023_1191126 crossref_primary_10_3389_fcvm_2022_1041044 crossref_primary_10_51847_qj30frczgF crossref_primary_10_3390_life14101219 crossref_primary_10_1515_biol_2022_0741 crossref_primary_10_1002_vetr_3822 crossref_primary_10_4103_aja202427 crossref_primary_10_1007_s10517_024_06275_w crossref_primary_10_3390_biomedicines11030827 crossref_primary_10_3390_biomedicines11030707 crossref_primary_10_3389_fmicb_2024_1443743 crossref_primary_10_3390_biom13091307 crossref_primary_10_1016_j_psj_2023_102900 crossref_primary_10_1111_jcmm_70045 crossref_primary_10_5658_WOOD_2023_51_5_358 crossref_primary_10_3390_ph17070898 crossref_primary_10_31083_j_jin2305092 crossref_primary_10_1155_2022_3255401 crossref_primary_10_12677_acm_2024_1482299 crossref_primary_10_1186_s10020_023_00716_4 crossref_primary_10_1093_ijfood_vvae071 crossref_primary_10_2147_IJN_S492651 crossref_primary_10_3389_fcvm_2022_990182 crossref_primary_10_12677_ACM_2023_13122796 crossref_primary_10_3390_nu15214551 crossref_primary_10_1016_j_numecd_2024_03_014 crossref_primary_10_3748_wjg_v31_i5_99913 crossref_primary_10_1080_1744666X_2023_2260103 crossref_primary_10_1007_s10753_024_02012_7 crossref_primary_10_21706_aep_18_3_171 crossref_primary_10_3390_ijms241713381 crossref_primary_10_3389_fcimb_2024_1370999 crossref_primary_10_3389_fmicb_2023_1158652 crossref_primary_10_1111_febs_17124 crossref_primary_10_3390_ph17111530 crossref_primary_10_3390_pharmaceutics15041202 crossref_primary_10_4239_wjd_v14_i12_1766 crossref_primary_10_1021_acs_jafc_3c02909 crossref_primary_10_1161_CIRCRESAHA_123_321763 crossref_primary_10_3390_jof10050333 crossref_primary_10_4014_jmb_2402_02021 crossref_primary_10_3389_fmicb_2022_1029890 crossref_primary_10_3389_fpls_2024_1337653 crossref_primary_10_1111_jcmm_70347 crossref_primary_10_2174_1871530322666220928144548 crossref_primary_10_3390_ph18010055 crossref_primary_10_3389_fmolb_2022_982672 crossref_primary_10_1128_msphere_00380_24 crossref_primary_10_3390_foods14060955 crossref_primary_10_3390_app13116605 crossref_primary_10_1007_s13668_023_00462_3 crossref_primary_10_1080_19490976_2024_2323237 crossref_primary_10_3390_ph16030462 crossref_primary_10_1007_s10620_022_07812_1 crossref_primary_10_3390_antiox12081515 |
Cites_doi | 10.1210/clinem/dgaa751 10.3390/microorganisms8091360 10.3390/nu11102310 10.3389/fcimb.2021.646348 10.1016/j.diabres.2020.108116 10.1038/nrendo.2014.171 10.1002/advs.202100536 10.1038/s41598-019-41195-0 10.4240/wjgs.v8.i4.301 10.1038/s41467-019-11944-w 10.7554/eLife.20145 10.1136/gutjnl-2014-307913 10.1136/gut.2008.165886 10.1053/j.gastro.2020.10.042 10.1016/j.celrep.2020.108013 10.18632/oncotarget.10597 10.1038/ijo.2014.153 10.2337/db11-0004 10.18632/aging.101978 10.1038/emm.2017.282 10.1016/j.biochi.2021.02.004 10.1038/srep30887 10.1007/s00394-020-02403-0 10.1007/s40520-020-01553-9 10.1016/j.cmet.2009.08.001 10.1038/nchembio.1864 10.1016/j.cmet.2016.01.003 10.1016/j.envres.2021.112640 10.2337/db20-1108 10.1016/j.cmet.2016.06.013 10.3945/ajcn.117.157107 10.1186/s40168-021-01046-5 10.1053/j.gastro.2021.06.056 10.18632/oncotarget.14611 10.1126/science.aar3318 10.1096/fj.13-243568 10.1038/ncomms8489 10.1016/j.freeradbiomed.2021.08.240 10.3390/microorganisms6040098 10.1080/19490976.2020.1842990 10.1039/d1fo00882j 10.1038/s41598-018-37242-x 10.3390/jcm6090086 10.21037/atm-20-6717 10.1530/joe-18-0137 10.1177/00220345211009449 10.1038/ncomms2852 10.1172/jci76289 10.2337/db06-1491 10.1039/d1fo00698c 10.1038/s41598-021-97868-2 10.1530/jme-19-0132 10.2337/db18-1321 10.1016/j.nut.2018.11.019 10.1016/j.cmet.2017.04.013 10.1021/acs.jafc.0c00605 10.1016/j.cmet.2019.11.001 10.1371/journal.pone.0071108 10.3390/nu12102996 10.1038/s41467-019-11370-y 10.1007/s10038-008-0341-8 10.15252/embj.2020107134 10.2337/db19-0153 10.1038/s41419-021-03930-2 10.1007/s00592-019-01316-7 10.1111/1753-0407.12986 10.1038/s41467-021-27385-3 10.1128/am.19.2.295-300.1970 10.1038/nature11450 10.1016/j.cell.2018.09.055 10.18632/aging.103750 10.1038/nature18646 10.1016/j.biopha.2020.110147 10.3389/fmicb.2019.00232 10.3390/microorganisms8010094 10.1016/j.celrep.2016.06.027 10.1038/s41423-020-00592-6 10.2337/diabetes.50.1.63 10.1016/j.toxlet.2018.01.006 10.1016/j.diabres.2019.107843 10.3389/fcell.2021.689469 10.1016/j.cmet.2021.03.025 10.1111/imm.13028 10.1016/j.jhep.2019.08.005 10.18632/aging.202174 10.1038/s41598-020-66598-2 10.3892/etm.2019.7943 10.3390/nu13092983 10.2337/dc20-2975 10.1136/gutjnl-2014-306928 10.1136/gutjnl-2015-310904 10.1128/mSystems.00109-20 10.3390/cells9122705 10.3389/fcimb.2021.719542 10.1152/physiol.00041.2015 10.1016/j.celrep.2014.10.032 10.7150/thno.56598 10.1007/s00253-020-10689-7 10.1038/nm.4236 10.1007/s00125-018-4550-1 10.1038/s41586-019-1236-x 10.1186/s40168-021-01052-7 10.1016/j.molmet.2016.10.008 10.1002/hep.29857 10.1038/ncomms7495 10.1126/scitranslmed.aav1892 10.3389/fmicb.2017.01936 10.1186/s12967-019-02169-y 10.1016/j.cmet.2017.03.021 10.1038/nature12506 10.1016/j.lfs.2020.118881 10.1073/pnas.1711169114 10.1371/journal.pone.0243077 10.2337/dc13-2817 10.1016/s0140-6736(13)62154-6 10.1038/s41589-020-0604-z 10.1007/s00125-018-4583-5 10.1007/s12020-019-02103-8 10.1186/s40168-021-01088-9 10.1128/Spectrum.00074-21 10.2147/dmso.s240728 10.1016/j.cell.2013.12.016 10.1152/ajpgi.00105.2020 10.3389/fphys.2018.00024 10.1038/nature12198 10.1038/s41467-019-09735-4 10.1021/acs.jafc.9b02083 10.1016/j.lfs.2019.116793 10.1096/fj.201801209R 10.18632/aging.102469 10.1186/s40168-021-01097-8 10.1016/j.ebiom.2019.08.048 10.1053/j.gastro.2017.02.016 10.1126/science.1179721 10.1016/j.bbrc.2005.01.139 10.1186/s12986-018-0318-3 10.1021/acs.jafc.1c02925 10.1073/pnas.1219451110 10.2337/db19-0920 10.1038/s41467-020-14676-4 10.3389/fmicb.2019.03141 10.3390/nu12113557 10.1007/s00592-020-01610-9 10.1016/j.micpath.2020.104589 10.1016/s0140-6736(12)60283-9 10.1038/nature04330 10.2337/db18-1307 10.1016/j.cmet.2016.05.005 10.2337/db07-1403 10.1155/2020/1904609 10.1016/j.jbiosc.2014.03.001 10.1126/sciadv.abd7954 10.1007/s12020-021-02721-1 10.3389/fimmu.2020.571731 10.1016/j.numecd.2021.01.007 10.1002/hep.28572 10.1016/j.cmet.2015.06.001 10.1016/j.reprotox.2021.10.008 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Zhou, Sun, Yu and Zhu. Copyright © 2022 Zhou, Sun, Yu and Zhu 2022 Zhou, Sun, Yu and Zhu |
Copyright_xml | – notice: Copyright © 2022 Zhou, Sun, Yu and Zhu. – notice: Copyright © 2022 Zhou, Sun, Yu and Zhu 2022 Zhou, Sun, Yu and Zhu |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fcimb.2022.834485 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2235-2988 |
ExternalDocumentID | oai_doaj_org_article_ab74eb1d3d144a599d9c7b9087876bab PMC8886906 35242721 10_3389_fcimb_2022_834485 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE INR KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-f1855ff626d90682ce3d1f75351e80415db5d665eb895ac8051e4f0dfd0e7aa43 |
IEDL.DBID | M48 |
ISSN | 2235-2988 |
IngestDate | Wed Aug 27 01:14:35 EDT 2025 Thu Aug 21 18:18:33 EDT 2025 Thu Jul 10 23:40:21 EDT 2025 Mon Jul 21 05:48:13 EDT 2025 Tue Jul 01 01:42:52 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | type 2 diabetes mellitus pathogenesis glucose metabolism insulin resistance gut microbiota |
Language | English |
License | Copyright © 2022 Zhou, Sun, Yu and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-f1855ff626d90682ce3d1f75351e80415db5d665eb895ac8051e4f0dfd0e7aa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Kanthida Kusonmano, King Mongkut’s University of Technology Thonburi, Thailand; Yotsawat Pomyen, Chulabhorn Research Institute, Thailand These authors have contributed equally to this work Edited by: Intawat Nookaew, University of Arkansas for Medical Sciences, United States This article was submitted to Microbiome in Health and Disease, a section of the journal Frontiers in Cellular and Infection Microbiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcimb.2022.834485 |
PMID | 35242721 |
PQID | 2636144411 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab74eb1d3d144a599d9c7b9087876bab pubmedcentral_primary_oai_pubmedcentral_nih_gov_8886906 proquest_miscellaneous_2636144411 pubmed_primary_35242721 crossref_primary_10_3389_fcimb_2022_834485 crossref_citationtrail_10_3389_fcimb_2022_834485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cellular and infection microbiology |
PublicationTitleAlternate | Front Cell Infect Microbiol |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Katsuma (B53) 2005; 329 Yang (B134) 2021; 60 Qin (B93) 2012; 490 Everard (B27) 2013; 110 Cavallari (B9) 2017; 25 Cani (B7) 2009; 58 Vanweert (B113) 2021; 106 De Vadder (B20) 2014; 156 Vijay-Kumar (B114) 2010; 328 Chelakkot (B14) 2018; 50 Luo (B71) 2021; 160 Lee (B61) 2021; 12 Watanabe (B123) 2006; 439 Hong (B40) 2017; 152 Beli (B4) 2019; 11 Thaiss (B109) 2018; 359 Zhao (B153) 2020; 69 Liu (B67) 2020; 31 Wei (B125) 2018; 15 Thomas (B110) 2009; 10 Liu (B65) 2020; 11 Zhang (B143) 2021; 33 Zhang (B145) 2013; 8 Luck (B70) 2019; 10 Plovier (B90) 2017; 23 Du (B25) 2021; 73 Hill (B39) 2016; 5 Morshedi (B77) 2020; 18 Yesair (B137) 1970; 19 Psichas (B91) 2015; 39 Tabák (B106) 2012; 379 Lee (B60) 2008; 53 Shan (B103) 2017; 106 Liu (B66) 2021; 175 Wang (B121) 2020; 162 Han (B38) 2021; 9 Zhu (B159) 2021; 267 Kang (B49) 2022; 207 Tian (B111) 2021; 31 Pathak (B84) 2018; 68 Ng (B79) 2021 Yu (B139) 2019; 11 Crittenden (B18) 2021; 7 Mouries (B78) 2019; 71 Houghton (B42) 2019; 33 Zhang (B144) 2021; 8 Mercer (B76) 2020; 319 Jia (B46) 2019; 68 Olaniyi (B82) 2021; 106 Chávez-Carbajal (B13) 2020; 8 Zhao (B152) 2020; 32 Yan (B136) 2016; 8 Okazaki (B81) 2019; 9 Zhang (B148) 2021; 12 Mao (B73) 2019; 68 Jung (B47) 2016; 6 Lynch (B72) 2014; 10 Perino (B89) 2014; 124 Griffen (B34) 2001; 50 Sehgal (B102) 2021; 40 Schmitt (B101) 2017; 6 Yang (B135) 2021; 161 Zhang (B147) 2019; 67 Cani (B5) 2007; 56 Gu (B36) 2016; 7 Xu (B133) 2020; 12 Horne (B41) 2020; 12 Guadagnini (B35) 2019; 234 Kahn (B48) 2014; 383 Olaniyi (B83) 2021; 184 Winer (B127) 2016; 23 Karlsson (B50) 2013; 498 Wei (B126) 2020; 68 Fang (B28) 2021; 44 Saeedi (B95) 2019; 157 Zhou (B157) 2019; 569 Salguero (B96) 2019; 18 Dione (B23) 2020; 9 Zhong (B156) 2019; 47 Kieler (B54) 2019; 9 Le Chatelier (B58) 2013; 500 Xie (B130) 2020; 12 Zhou (B158) 2019; 10 Koh (B57) 2018; 175 Noureldein (B80) 2020; 64 Pedersen (B86) 2016; 535 Wan (B122) 2017; 114 Chaudhari (B12) 2021; 17 Zhao (B151) 2021; 9 Zhang (B142) 2020; 12 Mavilio (B74) 2016; 16 Li (B62) 2021; 100 Chang (B11) 2015; 6 Li (B63) 2020; 8 Watanabe (B124) 2021; 13 Zhao (B150) 2019; 66 Schertzer (B100) 2011; 60 Devlin (B22) 2015; 11 Tao (B108) 2019; 56 Saad (B94) 2016; 31 Cheng (B16) 2018; 24 Jayasudha (B45) 2020; 15 Wu (B129) 2021; 69 De Vadder (B21) 2016; 24 Duparc (B26) 2017; 66 Gu (B37) 2017; 8 Virtue (B115) 2019; 11 Wang (B117) 2020; 13 Mayneris-Perxachs (B75) 2021; 9 Giannoudaki (B32) 2019; 10 Wang (B119) 2018; 287 Cani (B6) 2008; 57 Al-Obaide (B3) 2017; 6 Zheng (B154) 2020; 5 Wollam (B128) 2019; 68 Kikuchi (B55) 2019; 10 Geurts (B31) 2015; 6 Grasset (B33) 2017; 25 Yu (B140) 2021; 33 Caron (B8) 2014; 28 Gao (B29) 2014; 118 Sato (B98) 2014; 37 Xu (B132) 2018; 238 Chimerel (B17) 2014; 9 Del Chierico (B19) 2017; 65 Duan (B24) 2021; 12 Kashtanova (B52) 2018; 6 Sanchez-Alcoholado (B97) 2017; 8 Scheithauer (B99) 2020; 11 Takagi (B107) 2020; 12 Zhao (B149) 2020; 2020 Allin (B2) 2018; 61 Liu (B68) 2021; 58 Patil (B85) 2021; 152 Kashiwagi (B51) 2021; 11 Suriano (B105) 2021; 9 Lu (B69) 2021; 11 Shih (B104) 2020; 8 Lee (B59) 2021; 9 Janssen (B44) 2018; 61 Li (B64) 2020; 12 Peng (B87) 2019; 10 Yu (B138) 2019; 11 Huang (B43) 2021; 11 Kimura (B56) 2013; 4 Zheng (B155) 2021; 9 Zhang (B146) 2021; 12 Al Bataineh (B1) 2020; 10 Zeng (B141) 2021; 70 Garidou (B30) 2015; 22 Chambers (B10) 2015; 64 Qin (B92) 2021; 11 Xie (B131) 2020; 127 Wahlström (B116) 2016; 24 Wang (B118) 2021; 18 Chen (B15) 2019 Tilg (B112) 2014; 63 Wang (B120) 2020; 104 Pérez (B88) 2019; 156 |
References_xml | – volume: 106 start-page: e1827 year: 2021 ident: B113 article-title: Elevated Plasma Branched-Chain Amino Acid Levels Correlate With Type 2 Diabetes-Related Metabolic Disturbances publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgaa751 – volume: 8 start-page: 1360 year: 2020 ident: B104 article-title: Akkermansia Muciniphila is Negatively Correlated With Hemoglobin A1c in Refractory Diabetes publication-title: Microorganisms doi: 10.3390/microorganisms8091360 – volume: 11 start-page: 2310 year: 2019 ident: B4 article-title: Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates With Changes in Circulating Metabolites in Type 2 Diabetic Db/Db Mice publication-title: Nutrients doi: 10.3390/nu11102310 – volume: 11 year: 2021 ident: B43 article-title: Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2021.646348 – volume: 162 year: 2020 ident: B121 article-title: The Genus Sutterella Is a Potential Contributor to Glucose Metabolism Improvement After Roux-En-Y Gastric Bypass Surgery in T2D publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2020.108116 – volume: 10 start-page: 723 year: 2014 ident: B72 article-title: Branched-Chain Amino Acids in Metabolic Signalling and Insulin Resistance publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2014.171 – volume: 8 year: 2021 ident: B144 article-title: Decreased Abundance of Akkermansia Muciniphila Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes publication-title: Adv. Sci. (Weinheim Baden-Wurttemberg Germany) doi: 10.1002/advs.202100536 – volume: 9 start-page: 4822 year: 2019 ident: B54 article-title: Diabetic Cats Have Decreased Gut Microbial Diversity and a Lack of Butyrate Producing Bacteria publication-title: Sci. Rep. doi: 10.1038/s41598-019-41195-0 – volume: 8 start-page: 301 year: 2016 ident: B136 article-title: Effect of Roux-En-Y Gastric Bypass Surgery on Intestinal Akkermansia Muciniphila publication-title: World J. Gastrointest. Surg. doi: 10.4240/wjgs.v8.i4.301 – volume: 10 start-page: 4003 year: 2019 ident: B32 article-title: Interleukin-36 Cytokines Alter the Intestinal Microbiome and Can Protect Against Obesity and Metabolic Dysfunction publication-title: Nat. Commun. doi: 10.1038/s41467-019-11944-w – volume: 5 year: 2016 ident: B39 article-title: A Conserved Bacterial Protein Induces Pancreatic Beta Cell Expansion During Zebrafish Development publication-title: Elife doi: 10.7554/eLife.20145 – volume: 64 start-page: 1744 year: 2015 ident: B10 article-title: Effects of Targeted Delivery of Propionate to the Human Colon on Appetite Regulation, Body Weight Maintenance and Adiposity in Overweight Adults publication-title: Gut doi: 10.1136/gutjnl-2014-307913 – volume: 58 start-page: 1091 year: 2009 ident: B7 article-title: Changes in Gut Microbiota Control Inflammation in Obese Mice Through a Mechanism Involving GLP-2-Driven Improvement of Gut Permeability publication-title: Gut doi: 10.1136/gut.2008.165886 – volume: 160 start-page: 863 year: 2021 ident: B71 article-title: CRIg Macrophages Prevent Gut Microbial DNA-Containing Extracellular Vesicle-Induced Tissue Inflammation and Insulin Resistance publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.10.042 – volume: 32 year: 2020 ident: B152 article-title: Protein O-GlcNAc Modification Links Dietary and Gut Microbial Cues to the Differentiation of Enteroendocrine L Cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108013 – volume: 7 start-page: 48941 year: 2016 ident: B36 article-title: Deciphering Bacterial Community Changes in Zucker Diabetic Fatty Rats Based on 16S rRNA Gene Sequences Analysis publication-title: Oncotarget doi: 10.18632/oncotarget.10597 – volume: 39 start-page: 424 year: 2015 ident: B91 article-title: The Short Chain Fatty Acid Propionate Stimulates GLP-1 and PYY Secretion via Free Fatty Acid Receptor 2 in Rodents publication-title: Int. J. Obes. (2005) doi: 10.1038/ijo.2014.153 – volume: 60 start-page: 2206 year: 2011 ident: B100 article-title: NOD1 Activators Link Innate Immunity to Insulin Resistance publication-title: Diabetes doi: 10.2337/db11-0004 – volume: 11 start-page: 3262 year: 2019 ident: B139 article-title: Abnormal Gut Microbiota Composition Contributes to Cognitive Dysfunction in Streptozotocin-Induced Diabetic Mice publication-title: Aging (Albany N. Y.) doi: 10.18632/aging.101978 – volume: 50 start-page: e450 year: 2018 ident: B14 article-title: Akkermansia Muciniphila-Derived Extracellular Vesicles Influence Gut Permeability Through the Regulation of Tight Junctions publication-title: Exp. Mol. Med. doi: 10.1038/emm.2017.282 – volume: 184 start-page: 52 year: 2021 ident: B83 article-title: Rescue Effect of Sodium Acetate in Diabetes Mellitus-Associated Testicular Dysfunction Is Accompanied by PCSK9 Modulation publication-title: Biochimie doi: 10.1016/j.biochi.2021.02.004 – volume: 6 year: 2016 ident: B47 article-title: Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-Induced Obese Mice publication-title: Sci. Rep. doi: 10.1038/srep30887 – volume: 60 start-page: 2155 year: 2021 ident: B134 article-title: Genistein Ameliorates Inflammation and Insulin Resistance Through Mediation of Gut Microbiota Composition in Type 2 Diabetic Mice publication-title: Eur. J. Nutr. doi: 10.1007/s00394-020-02403-0 – volume: 33 start-page: 589 year: 2021 ident: B143 article-title: The Diversity of Gut Microbiota in Type 2 Diabetes With or Without Cognitive Impairment publication-title: Aging Clin. Exp. Res. doi: 10.1007/s40520-020-01553-9 – volume: 10 start-page: 167 year: 2009 ident: B110 article-title: TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.08.001 – volume: 11 start-page: 685 year: 2015 ident: B22 article-title: A Biosynthetic Pathway for a Prominent Class of Microbiota-Derived Bile Acids publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1864 – volume: 23 start-page: 413 year: 2016 ident: B127 article-title: The Intestinal Immune System in Obesity and Insulin Resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.01.003 – volume: 207 year: 2022 ident: B49 article-title: Adverse Associations of Different Obesity Measures and the Interactions With Long-Term Exposure to Air Pollutants With Prevalent Type 2 Diabetes Mellitus: The Henan Rural Cohort Study publication-title: Environ. Res. doi: 10.1016/j.envres.2021.112640 – volume: 70 start-page: 1536 year: 2021 ident: B141 article-title: FOXO1-Mediated Downregulation of RAB27B Leads to Decreased Exosome Secretion in Diabetic Kidneys publication-title: Diabetes doi: 10.2337/db20-1108 – volume: 24 start-page: 151 year: 2016 ident: B21 article-title: Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.013 – volume: 106 start-page: 888 year: 2017 ident: B103 article-title: Association Between Microbiota-Dependent Metabolite Trimethylamine-N-Oxide and Type 2 Diabetes publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.117.157107 – volume: 9 start-page: 101 year: 2021 ident: B38 article-title: Androgen-Induced Gut Dysbiosis Disrupts Glucolipid Metabolism and Endocrinal Functions in Polycystic Ovary Syndrome publication-title: Microbiome doi: 10.1186/s40168-021-01046-5 – volume: 161 year: 2021 ident: B135 article-title: Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus publication-title: Gastroenterology doi: 10.1053/j.gastro.2021.06.056 – volume: 8 start-page: 27693 year: 2017 ident: B37 article-title: ZiBuPiYin Recipe Improves Cognitive Decline by Regulating Gut Microbiota in Zucker Diabetic Fatty Rats publication-title: Oncotarget doi: 10.18632/oncotarget.14611 – volume: 359 start-page: 1376 year: 2018 ident: B109 article-title: Hyperglycemia Drives Intestinal Barrier Dysfunction and Risk for Enteric Infection publication-title: Science doi: 10.1126/science.aar3318 – volume: 28 start-page: 1306 year: 2014 ident: B8 article-title: The SIRT1 Deacetylase Protects Mice Against the Symptoms of Metabolic Syndrome publication-title: FASEB J. doi: 10.1096/fj.13-243568 – volume: 6 start-page: 7489 year: 2015 ident: B11 article-title: Ganoderma Lucidum Reduces Obesity in Mice by Modulating the Composition of the Gut Microbiota publication-title: Nat. Commun. doi: 10.1038/ncomms8489 – volume: 175 start-page: 141 year: 2021 ident: B66 article-title: Elevated Branched-Chain α-Keto Acids Exacerbate Macrophage Oxidative Stress and Chronic Inflammatory Damage in Type 2 Diabetes Mellitus publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2021.08.240 – volume: 6 start-page: 98 year: 2018 ident: B52 article-title: Gut Microbiota in Patients With Different Metabolic Statuses: Moscow Study publication-title: Microorganisms doi: 10.3390/microorganisms6040098 – volume: 12 start-page: 1 year: 2020 ident: B142 article-title: Phlorizin Ameliorates Obesity-Associated Endotoxemia and Insulin Resistance in High-Fat Diet-Fed Mice by Targeting the Gut Microbiota and Intestinal Barrier Integrity publication-title: Gut Microbes doi: 10.1080/19490976.2020.1842990 – volume: 12 start-page: 8288 year: 2021 ident: B146 article-title: Lactobacillus Casei LC89 Exerts Antidiabetic Effects Through Regulating Hepatic Glucagon Response and Gut Microbiota in Type 2 Diabetic Mice publication-title: Food Funct. doi: 10.1039/d1fo00882j – volume: 9 start-page: 867 year: 2019 ident: B81 article-title: Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish publication-title: Sci. Rep. doi: 10.1038/s41598-018-37242-x – volume-title: Gut year: 2021 ident: B79 article-title: Microbiota Engraftment After Faecal Microbiota Transplantation in Obese Subjects With Type 2 Diabetes: A 24-Week, Double-Blind, Randomised Controlled Trial – volume: 6 start-page: 86 year: 2017 ident: B3 article-title: Gut Microbiota-Dependent Trimethylamine-N-Oxide and Serum Biomarkers in Patients With T2DM and Advanced CKD publication-title: J. Clin. Med. doi: 10.3390/jcm6090086 – volume: 8 start-page: 1481 year: 2020 ident: B63 article-title: Correlation Between Alterations of Gut Microbiota and miR-122-5p Expression in Patients With Type 2 Diabetes Mellitus publication-title: Ann. Trans. Med. doi: 10.21037/atm-20-6717 – volume: 238 start-page: 231 year: 2018 ident: B132 article-title: Sodium Butyrate Supplementation Ameliorates Diabetic Inflammation in Db/Db Mice publication-title: J. Endocrinol. doi: 10.1530/joe-18-0137 – volume: 100 start-page: 1387 year: 2021 ident: B62 article-title: Gut Microbiota May Mediate the Influence of Periodontitis on Prediabetes publication-title: J. Dental Res. doi: 10.1177/00220345211009449 – volume: 4 start-page: 1829 year: 2013 ident: B56 article-title: The Gut Microbiota Suppresses Insulin-Mediated Fat Accumulation via the Short-Chain Fatty Acid Receptor GPR43 publication-title: Nat. Commun. doi: 10.1038/ncomms2852 – volume: 124 start-page: 5424 year: 2014 ident: B89 article-title: TGR5 Reduces Macrophage Migration Through mTOR-Induced C/Ebpβ Differential Translation publication-title: J. Clin. Invest. doi: 10.1172/jci76289 – volume: 56 start-page: 1761 year: 2007 ident: B5 article-title: Metabolic Endotoxemia Initiates Obesity and Insulin Resistance publication-title: Diabetes doi: 10.2337/db06-1491 – volume: 12 start-page: 6363 year: 2021 ident: B61 article-title: Lactobacillus Plantarum HAC01 Ameliorates Type 2 Diabetes in High-Fat Diet and Streptozotocin-Induced Diabetic Mice in Association With Modulating the Gut Microbiota publication-title: Food Funct. doi: 10.1039/d1fo00698c – volume: 11 start-page: 18398 year: 2021 ident: B51 article-title: Porphyromonas Gingivalis Induces Entero-Hepatic Metabolic Derangements With Alteration of Gut Microbiota in a Type 2 Diabetes Mouse Model publication-title: Sci. Rep. doi: 10.1038/s41598-021-97868-2 – volume: 64 start-page: 29 year: 2020 ident: B80 article-title: Butyrate Modulates Diabetes-Linked Gut Dysbiosis: Epigenetic and Mechanistic Modifications publication-title: J. Mol. Endocrinol. doi: 10.1530/jme-19-0132 – volume: 68 start-page: 1197 year: 2019 ident: B73 article-title: Deficiency of ZnT8 Promotes Adiposity and Metabolic Dysfunction by Increasing Peripheral Serotonin Production publication-title: Diabetes doi: 10.2337/db18-1321 – start-page: 51 year: 2019 ident: B15 article-title: The Alteration of Gut Microbiota in Newly Diagnosed Type 2 Diabetic Patients publication-title: Nutrition doi: 10.1016/j.nut.2018.11.019 – volume: 25 start-page: 1075 year: 2017 ident: B33 article-title: A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance Through an Enteric NO-Dependent and Gut-Brain Axis Mechanism publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.04.013 – volume: 68 start-page: 5107 year: 2020 ident: B126 article-title: Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic Db/Db Mice publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c00605 – volume: 31 start-page: 77 year: 2020 ident: B67 article-title: Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.11.001 – volume: 8 year: 2013 ident: B145 article-title: Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance publication-title: PLoS One doi: 10.1371/journal.pone.0071108 – volume: 12 start-page: 2996 year: 2020 ident: B107 article-title: Changes in the Gut Microbiota Are Associated With Hypertension, Hyperlipidemia, and Type 2 Diabetes Mellitus in Japanese Subjects publication-title: Nutrients doi: 10.3390/nu12102996 – volume: 10 start-page: 3650 year: 2019 ident: B70 article-title: Gut-Associated IgA Immune Cells Regulate Obesity-Related Insulin Resistance publication-title: Nat. Commun. doi: 10.1038/s41467-019-11370-y – volume: 53 start-page: 991 year: 2008 ident: B60 article-title: Association Between Polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and Type 2 Diabetes in the Korean Population publication-title: J. Hum. Genet. doi: 10.1007/s10038-008-0341-8 – volume: 40 year: 2021 ident: B102 article-title: LncRNA VEAL2 Regulates PRKCB2 to Modulate Endothelial Permeability in Diabetic Retinopathy publication-title: EMBO J. doi: 10.15252/embj.2020107134 – volume: 68 start-page: 1747 year: 2019 ident: B46 article-title: Assessment of Causal Direction Between Gut Microbiota-Dependent Metabolites and Cardiometabolic Health: A Bidirectional Mendelian Randomization Analysis publication-title: Diabetes doi: 10.2337/db19-0153 – volume: 12 start-page: 642 year: 2021 ident: B148 article-title: TXNIP, a Novel Key Factor to Cause Schwann Cell Dysfunction in Diabetic Peripheral Neuropathy, Under the Regulation of PI3K/Akt Pathway Inhibition-Induced DNMT1 and DNMT3a Overexpression publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03930-2 – volume: 56 start-page: 581 year: 2019 ident: B108 article-title: Understanding the Gut-Kidney Axis Among Biopsy-Proven Diabetic Nephropathy, Type 2 Diabetes Mellitus and Healthy Controls: An Analysis of the Gut Microbiota Composition publication-title: Acta Diabetol. doi: 10.1007/s00592-019-01316-7 – volume: 12 start-page: 224 year: 2020 ident: B133 article-title: Faecalibacterium Prausnitzii-Derived Microbial Anti-Inflammatory Molecule Regulates Intestinal Integrity in Diabetes Mellitus Mice via Modulating Tight Junction Protein Expression publication-title: J. Diabetes. doi: 10.1111/1753-0407.12986 – volume: 12 start-page: 7172 year: 2021 ident: B24 article-title: CRIg on Liver Macrophages Clears Pathobionts and Protects Against Alcoholic Liver Disease publication-title: Nat. Commun. doi: 10.1038/s41467-021-27385-3 – volume: 19 start-page: 295 year: 1970 ident: B137 article-title: Hydrolysis of Conjugated Bile Acids by Cell-Free Extracts From Aerobic Bacteria publication-title: Appl. Microbiol. doi: 10.1128/am.19.2.295-300.1970 – volume: 490 start-page: 55 year: 2012 ident: B93 article-title: A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes publication-title: Nature doi: 10.1038/nature11450 – volume: 175 start-page: 947 year: 2018 ident: B57 article-title: Microbially Produced Imidazole Propionate Impairs Insulin Signaling Through Mtorc1 publication-title: Cell doi: 10.1016/j.cell.2018.09.055 – volume: 12 start-page: 17436 year: 2020 ident: B130 article-title: Jinmaitong Ameliorates Diabetic Peripheral Neuropathy in Streptozotocin-Induced Diabetic Rats by Modulating Gut Microbiota and Neuregulin 1 publication-title: Aging (Albany N. Y.) doi: 10.18632/aging.103750 – volume: 535 start-page: 376 year: 2016 ident: B86 article-title: Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity publication-title: Nature doi: 10.1038/nature18646 – volume: 127 year: 2020 ident: B131 article-title: Protective Effect of Quercetin on Streptozotocin-Induced Diabetic Peripheral Neuropathy Rats Through Modulating Gut Microbiota and Reactive Oxygen Species Level publication-title: BioMed. Pharmacother. doi: 10.1016/j.biopha.2020.110147 – volume: 10 year: 2019 ident: B158 article-title: Dynamic Development of Fecal Microbiome During the Progression of Diabetes Mellitus in Zucker Diabetic Fatty Rats publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00232 – volume: 8 start-page: 94 year: 2020 ident: B13 article-title: Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship With the Host publication-title: Microorganisms doi: 10.3390/microorganisms8010094 – volume: 16 start-page: 731 year: 2016 ident: B74 article-title: A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.06.027 – volume: 18 start-page: 4 year: 2021 ident: B118 article-title: Gut Microbiome, Liver Immunology, and Liver Diseases publication-title: Cell. Mol. Immunol.. doi: 10.1038/s41423-020-00592-6 – volume: 50 start-page: 63 year: 2001 ident: B34 article-title: A Genetic Defect in Beta-Cell Gene Expression Segregates Independently From the Fa Locus in the ZDF Rat publication-title: Diabetes doi: 10.2337/diabetes.50.1.63 – volume: 287 start-page: 10 year: 2018 ident: B119 article-title: Diabetic Cognitive Dysfunction Is Associated With Increased Bile Acids in Liver and Activation of Bile Acid Signaling in Intestine publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2018.01.006 – volume: 157 year: 2019 ident: B95 article-title: Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results From the International Diabetes Federation Diabetes Atlas, 9(Th) Edition publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2019.107843 – volume: 9 year: 2021 ident: B151 article-title: Single-Cell Transcriptomics Reveals Endothelial Plasticity During Diabetic Atherogenesis publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.689469 – volume: 33 start-page: 905 year: 2021 ident: B140 article-title: The Adverse Metabolic Effects of Branched-Chain Amino Acids are Mediated by Isoleucine and Valine publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.03.025 – volume: 156 start-page: 339 year: 2019 ident: B88 article-title: Interleukin-17/Interleukin-17 Receptor Axis Elicits Intestinal Neutrophil Migration, Restrains Gut Dysbiosis and Lipopolysaccharide Translocation in High-Fat Diet-Induced Metabolic Syndrome Model publication-title: Immunology doi: 10.1111/imm.13028 – volume: 71 start-page: 1216 year: 2019 ident: B78 article-title: Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.08.005 – volume: 12 start-page: 25956 year: 2020 ident: B64 article-title: Periodontitis in Elderly Patients With Type 2 Diabetes Mellitus: Impact on Gut Microbiota and Systemic Inflammation publication-title: Aging doi: 10.18632/aging.202174 – volume: 10 start-page: 9624 year: 2020 ident: B1 article-title: Revealing Links Between Gut Microbiome and Its Fungal Community in Type 2 Diabetes Mellitus Among Emirati Subjects: A Pilot Study publication-title: Sci. Rep. doi: 10.1038/s41598-020-66598-2 – volume: 18 start-page: 3461 year: 2019 ident: B96 article-title: Dysbiosis of Gram-Negative Gut Microbiota and the Associated Serum Lipopolysaccharide Exacerbates Inflammation in Type 2 Diabetic Patients With Chronic Kidney Disease publication-title: Exp. Ther. Med. doi: 10.3892/etm.2019.7943 – volume: 13 start-page: 2983 year: 2021 ident: B124 article-title: Supplementation of 1-Kestose Modulates the Gut Microbiota Composition to Ameliorate Glucose Metabolism in Obesity-Prone Hosts publication-title: Nutrients doi: 10.3390/nu13092983 – volume: 44 start-page: 2738 year: 2021 ident: B28 article-title: Characteristics of the Gut Microbiota and Metabolism in Patients With Latent Autoimmune Diabetes in Adults: A Case-Control Study publication-title: Diabetes Care doi: 10.2337/dc20-2975 – volume: 63 start-page: 1513 year: 2014 ident: B112 article-title: Microbiota and Diabetes: An Evolving Relationship publication-title: Gut doi: 10.1136/gutjnl-2014-306928 – volume: 66 start-page: 620 year: 2017 ident: B26 article-title: Hepatocyte MyD88 Affects Bile Acids, Gut Microbiota and Metabolome Contributing to Regulate Glucose and Lipid Metabolism publication-title: Gut doi: 10.1136/gutjnl-2015-310904 – volume: 5 year: 2020 ident: B154 article-title: Gestational Diabetes Mellitus Is Associated With Reduced Dynamics of Gut Microbiota During the First Half of Pregnancy publication-title: mSystems doi: 10.1128/mSystems.00109-20 – volume: 9 start-page: 2705 year: 2020 ident: B23 article-title: Mgll Knockout Mouse Resistance to Diet-Induced Dysmetabolism Is Associated With Altered Gut Microbiota publication-title: Cells doi: 10.3390/cells9122705 – volume: 11 year: 2021 ident: B92 article-title: Intestinal Microbiota Play an Important Role in the Treatment of Type I Diabetes in Mice With BefA Protein publication-title: Front. Cell. Infect Microbiol. doi: 10.3389/fcimb.2021.719542 – volume: 31 start-page: 283 year: 2016 ident: B94 article-title: Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance publication-title: Physiol. (Bethesda) doi: 10.1152/physiol.00041.2015 – volume: 9 start-page: 1202 year: 2014 ident: B17 article-title: Bacterial Metabolite Indole Modulates Incretin Secretion From Intestinal Enteroendocrine L Cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.032 – volume: 11 start-page: 4728 year: 2021 ident: B69 article-title: GPR43 Deficiency Protects Against Podocyte Insulin Resistance in Diabetic Nephropathy Through the Restoration of Ampkα Activity publication-title: Theranostics doi: 10.7150/thno.56598 – volume: 104 start-page: 7143 year: 2020 ident: B120 article-title: A Comparative Study of Microbial Community and Functions of Type 2 Diabetes Mellitus Patients With Obesity and Healthy People publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10689-7 – volume: 23 start-page: 107 year: 2017 ident: B90 article-title: A Purified Membrane Protein From Akkermansia Muciniphila or the Pasteurized Bacterium Improves Metabolism in Obese and Diabetic Mice publication-title: Nat. Med. doi: 10.1038/nm.4236 – volume: 61 start-page: 810 year: 2018 ident: B2 article-title: Aberrant Intestinal Microbiota in Individuals With Prediabetes publication-title: Diabetologia doi: 10.1007/s00125-018-4550-1 – volume: 569 start-page: 663 year: 2019 ident: B157 article-title: Longitudinal Multi-Omics of Host-Microbe Dynamics in Prediabetes publication-title: Nature doi: 10.1038/s41586-019-1236-x – volume: 9 start-page: 104 year: 2021 ident: B75 article-title: Iron Status Influences Non-Alcoholic Fatty Liver Disease in Obesity Through the Gut Microbiome publication-title: Microbiome doi: 10.1186/s40168-021-01052-7 – volume: 6 start-page: 61 year: 2017 ident: B101 article-title: Intestinal Invalidation of the Glucose Transporter GLUT2 Delays Tissue Distribution of Glucose and Reveals an Unexpected Role in Gut Homeostasis publication-title: Mol. Metab. doi: 10.1016/j.molmet.2016.10.008 – volume: 68 start-page: 1574 year: 2018 ident: B84 article-title: Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-Protein Bile Acid Receptor-1 Signaling to Improve Metabolism publication-title: Hepatology doi: 10.1002/hep.29857 – volume: 6 start-page: 6495 year: 2015 ident: B31 article-title: Adipose Tissue NAPE-PLD Controls Fat Mass Development by Altering the Browning Process and Gut Microbiota publication-title: Nat. Commun. doi: 10.1038/ncomms7495 – volume: 11 year: 2019 ident: B115 article-title: The Gut Microbiota Regulates White Adipose Tissue Inflammation and Obesity via a Family of microRNAs publication-title: Sci. Trans. Med. doi: 10.1126/scitranslmed.aav1892 – volume: 8 year: 2017 ident: B97 article-title: Role of Gut Microbiota on Cardio-Metabolic Parameters and Immunity in Coronary Artery Disease Patients With and Without Type-2 Diabetes Mellitus publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01936 – volume: 18 start-page: 18 year: 2020 ident: B77 article-title: The Potential Therapeutic Effects of the Gut Microbiome Manipulation by Synbiotic Containing-Lactobacillus Plantarum on Neuropsychological Performance of Diabetic Rats publication-title: J. Transl. Med. doi: 10.1186/s12967-019-02169-y – volume: 25 start-page: 1063 year: 2017 ident: B9 article-title: Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4 publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.03.021 – volume: 500 start-page: 541 year: 2013 ident: B58 article-title: Richness of Human Gut Microbiome Correlates With Metabolic Markers publication-title: Nature doi: 10.1038/nature12506 – volume: 267 year: 2021 ident: B159 article-title: Catalpol Ameliorates Diabetes-Induced Testicular Injury and Modulates Gut Microbiota publication-title: Life Sci. doi: 10.1016/j.lfs.2020.118881 – volume: 114 start-page: 10196 year: 2017 ident: B122 article-title: Proteoliposome-Based Full-Length ZnT8 Self-Antigen for Type 1 Diabetes Diagnosis on a Plasmonic Platform publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1711169114 – volume: 15 year: 2020 ident: B45 article-title: Gut Mycobiomes are Altered in People With Type 2 Diabetes Mellitus and Diabetic Retinopathy publication-title: PLoS One doi: 10.1371/journal.pone.0243077 – volume: 37 start-page: 2343 year: 2014 ident: B98 article-title: Gut Dysbiosis and Detection of “Live Gut Bacteria” in Blood of Japanese Patients With Type 2 Diabetes publication-title: Diabetes Care doi: 10.2337/dc13-2817 – volume: 383 start-page: 1068 year: 2014 ident: B48 article-title: Pathophysiology and Treatment of Type 2 Diabetes: Perspectives on the Past, Present, and Future publication-title: Lancet doi: 10.1016/s0140-6736(13)62154-6 – volume: 17 start-page: 20 year: 2021 ident: B12 article-title: Bariatric Surgery Reveals a Gut-Restricted TGR5 Agonist With Anti-Diabetic Effects publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0604-z – volume: 61 start-page: 1447 year: 2018 ident: B44 article-title: Loss of Angiopoietin-Like 4 (ANGPTL4) in Mice With Diet-Induced Obesity Uncouples Visceral Obesity From Glucose Intolerance Partly via the Gut Microbiota publication-title: Diabetologia doi: 10.1007/s00125-018-4583-5 – volume: 66 start-page: 526 year: 2019 ident: B150 article-title: Comprehensive Relationships Between Gut Microbiome and Faecal Metabolome in Individuals With Type 2 Diabetes and Its Complications publication-title: Endocrine doi: 10.1007/s12020-019-02103-8 – volume: 9 start-page: 145 year: 2021 ident: B155 article-title: Depletion of Acetate-Producing Bacteria From the Gut Microbiota Facilitates Cognitive Impairment Through the Gut-Brain Neural Mechanism in Diabetic Mice publication-title: Microbiome doi: 10.1186/s40168-021-01088-9 – volume: 9 year: 2021 ident: B59 article-title: High-Fat-Diet-Induced Oxidative Stress Linked to the Increased Colonization of Lactobacillus Sakei in an Obese Population publication-title: Microbiol. Spectr. doi: 10.1128/Spectrum.00074-21 – volume: 13 start-page: 835 year: 2020 ident: B117 article-title: Phocea, Pseudoflavonifractor and Lactobacillus Intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus publication-title: Diabetes Metab. Syndr. Obes. doi: 10.2147/dmso.s240728 – volume: 156 start-page: 84 year: 2014 ident: B20 article-title: Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits publication-title: Cell doi: 10.1016/j.cell.2013.12.016 – volume: 319 start-page: G157 year: 2020 ident: B76 article-title: Xenometabolite Signatures in the UC Davis Type 2 Diabetes Mellitus Rat Model Revealed Using a Metabolomics Platform Enriched With Microbe-Derived Metabolites. American Journal of Physiology publication-title: Gastrointest. Liver. Physiol. doi: 10.1152/ajpgi.00105.2020 – volume: 24 year: 2018 ident: B16 article-title: TRIM31 Deficiency Is Associated With Impaired Glucose Metabolism and Disrupted Gut Microbiota in Mice publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00024 – volume: 498 start-page: 99 year: 2013 ident: B50 article-title: Gut Metagenome in European Women With Normal, Impaired and Diabetic Glucose Control publication-title: Nature doi: 10.1038/nature12198 – volume: 10 start-page: 1835 year: 2019 ident: B55 article-title: Gut Microbiome-Derived Phenyl Sulfate Contributes to Albuminuria in Diabetic Kidney Disease publication-title: Nat. Commun. doi: 10.1038/s41467-019-09735-4 – volume: 67 start-page: 7694 year: 2019 ident: B147 article-title: Sodium Butyrate Improves Liver Glycogen Metabolism in Type 2 Diabetes Mellitus publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b02083 – volume: 234 year: 2019 ident: B35 article-title: Microbiota Determines Insulin Sensitivity in TLR2-KO Mice publication-title: Life Sci. doi: 10.1016/j.lfs.2019.116793 – volume: 33 start-page: 1887 year: 2019 ident: B42 article-title: Gut Microbiome Catabolites as Novel Modulators of Muscle Cell Glucose Metabolism publication-title: FASEB J. doi: 10.1096/fj.201801209R – volume: 11 start-page: 10454 year: 2019 ident: B138 article-title: Abnormal Gut Microbiota Composition Contributes to the Development of Type 2 Diabetes Mellitus in Db/Db Mice publication-title: Aging (Albany N. Y.) doi: 10.18632/aging.102469 – volume: 9 start-page: 147 year: 2021 ident: B105 article-title: Novel Insights Into the Genetically Obese (Ob/Ob) and Diabetic (Db/Db) Mice: Two Sides of the Same Coin publication-title: Microbiome doi: 10.1186/s40168-021-01097-8 – volume: 47 start-page: 373 year: 2019 ident: B156 article-title: Distinct Gut Metagenomics and Metaproteomics Signatures in Prediabetics and Treatment-Naïve Type 2 Diabetics publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.08.048 – volume: 152 start-page: 1998 year: 2017 ident: B40 article-title: Gut-Specific Delivery of T-Helper 17 Cells Reduces Obesity and Insulin Resistance in Mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.02.016 – volume: 328 start-page: 228 year: 2010 ident: B114 article-title: Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5 publication-title: Science (N.Y. N.Y.) doi: 10.1126/science.1179721 – volume: 329 start-page: 386 year: 2005 ident: B53 article-title: Bile Acids Promote Glucagon-Like Peptide-1 Secretion Through TGR5 in a Murine Enteroendocrine Cell Line STC-1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.01.139 – volume: 15 start-page: 80 year: 2018 ident: B125 article-title: Intermittent Administration of a Fasting-Mimicking Diet Intervenes in Diabetes Progression, Restores β Cells and Reconstructs Gut Microbiota in Mice publication-title: Nutr. Metab. doi: 10.1186/s12986-018-0318-3 – volume: 69 start-page: 8797 year: 2021 ident: B129 article-title: Lactobacillus Rhamnosus LRa05 Ameliorate Hyperglycemia Through a Regulating Glucagon-Mediated Signaling Pathway and Gut Microbiota in Type 2 Diabetic Mice publication-title: J. Agric. Food. Chem. doi: 10.1021/acs.jafc.1c02925 – volume: 110 start-page: 9066 year: 2013 ident: B27 article-title: Cross-Talk Between Akkermansia Muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1219451110 – volume: 69 start-page: 1164 year: 2020 ident: B153 article-title: Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling publication-title: Diabetes doi: 10.2337/db19-0920 – volume: 11 start-page: 855 year: 2020 ident: B65 article-title: Gut Microbiota Mediates Intermittent-Fasting Alleviation of Diabetes-Induced Cognitive Impairment publication-title: Nat. Commun. doi: 10.1038/s41467-020-14676-4 – volume: 10 year: 2019 ident: B87 article-title: Integrated 16s rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-Obese Type 2 Diabetic Goto-Kakizaki Rats publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.03141 – volume: 12 start-page: 3557 year: 2020 ident: B41 article-title: High Fat-High Fructose Diet-Induced Changes in the Gut Microbiota Associated With Dyslipidemia in Syrian Hamsters publication-title: Nutrients doi: 10.3390/nu12113557 – volume: 58 start-page: 221 year: 2021 ident: B68 article-title: Elevated Plasma Trimethylamine-N-Oxide Levels Are Associated With Diabetic Retinopathy publication-title: Acta Diabetol. doi: 10.1007/s00592-020-01610-9 – volume: 152 year: 2021 ident: B85 article-title: Glycation of Gut Proteins Initiates Microbial Dysbiosis and can Promote Establishment of Diabetes in Experimental Animals publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2020.104589 – volume: 379 start-page: 2279 year: 2012 ident: B106 article-title: Prediabetes: A High-Risk State for Diabetes Development publication-title: Lancet doi: 10.1016/s0140-6736(12)60283-9 – volume: 439 start-page: 484 year: 2006 ident: B123 article-title: Bile Acids Induce Energy Expenditure by Promoting Intracellular Thyroid Hormone Activation publication-title: Nature doi: 10.1038/nature04330 – volume: 68 start-page: 1415 year: 2019 ident: B128 article-title: Microbiota-Produced N-Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance publication-title: Diabetes doi: 10.2337/db18-1307 – volume: 24 start-page: 41 year: 2016 ident: B116 article-title: Intestinal Crosstalk Between Bile Acids and Microbiota and Its Impact on Host Metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.05.005 – volume: 57 start-page: 1470 year: 2008 ident: B6 article-title: Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice publication-title: Diabetes doi: 10.2337/db07-1403 – volume: 2020 year: 2020 ident: B149 article-title: Sodium Butyrate-Modulated Mitochondrial Function in High-Insulin Induced HepG2 Cell Dysfunction publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2020/1904609 – volume: 118 start-page: 476 year: 2014 ident: B29 article-title: Dietary Trimethylamine N-Oxide Exacerbates Impaired Glucose Tolerance in Mice Fed a High Fat Diet publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2014.03.001 – volume: 7 year: 2021 ident: B18 article-title: Prostaglandin E(2) Promotes Intestinal Inflammation via Inhibiting Microbiota-Dependent Regulatory T Cells publication-title: Sci. Adv. doi: 10.1126/sciadv.abd7954 – volume: 73 start-page: 71 year: 2021 ident: B25 article-title: Alteration of Gut Microbial Profile in Patients With Diabetic Nephropathy publication-title: Endocrine doi: 10.1007/s12020-021-02721-1 – volume: 11 year: 2020 ident: B99 article-title: Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.571731 – volume: 31 start-page: 1454 year: 2021 ident: B111 article-title: Gut Microbiota Dysbiosis in Stable Coronary Artery Disease Combined With Type 2 Diabetes Mellitus Influences Cardiovascular Prognosis publication-title: Nutr. Metab. Cardiovasc. Dis. doi: 10.1016/j.numecd.2021.01.007 – volume: 65 start-page: 451 year: 2017 ident: B19 article-title: Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta-Omics-Based Approach publication-title: Hepatology doi: 10.1002/hep.28572 – volume: 22 start-page: 100 year: 2015 ident: B30 article-title: The Gut Microbiota Regulates Intestinal CD4 T Cells Expressing Rorγt and Controls Metabolic Disease publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.06.001 – volume: 106 start-page: 69 year: 2021 ident: B82 article-title: Repression of HDAC5 by Acetate Restores Hypothalamic-Pituitary-Ovarian Function in Type 2 Diabetes Mellitus publication-title: Reprod. Toxicol. (Elmsford N.Y.) doi: 10.1016/j.reprotox.2021.10.008 |
SSID | ssj0000702893 |
Score | 2.6197138 |
SecondaryResourceType | review_article |
Snippet | Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 834485 |
SubjectTerms | Cellular and Infection Microbiology glucose metabolism gut microbiota insulin resistance pathogenesis type 2 diabetes mellitus |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA4iFLyItv4YbUsKnoTR-ZFkkl6KLbUqrHhQ8BaSSYIL6yju7MH_vu8l47IrYi-9zmSY8OUl733k8X2EHEgfrFPAVNuCu5wZ63ILeSlXgWHKcG0ZLVlGl-Lshl3c8tsFqy_sCUvywAm4Y2MbBueJqx2U_oYr5VTbWFVIiDRhjcXTF3LeApmKZ3CDN2h1usYEFqaOQzu-t8AHq-oIrSXQO3khEUW9_reKzNe9kgvJ53SDrA9VIz1Js90kK777SD4kH8nnT-THn1lPR-OkqdSb7_Sko-f3sbLueno1MVBX03FHkXTSig5dMFM6QjXOfjbdIjenv69_neWDM0LeMsH7PECW5SEAGUGcZdV6gCcA8-Clj4JCznInBPdWKm5aCTvPs1C44ArfGMPqbbLaPXR-l9AQeKikQ6InmRdeirqpa-VYaUJROJ-R4gUm3Q6y4eheMdFAHxBZHZHViKxOyGbkcP7JY9LMeG_wT8R-PhDlruMDCAI9BIH-VxBk5NvLymnYHnjnYTr_MJvqStRIeVlZZmQnreT8V1B7sgoYcEaapTVemsvym258FyW4pUQnL7H3Pya_T9YQD2wFL_lnsto_zfwXqHR6-zUG9V9KJfuP priority: 102 providerName: Directory of Open Access Journals |
Title | Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35242721 https://www.proquest.com/docview/2636144411 https://pubmed.ncbi.nlm.nih.gov/PMC8886906 https://doaj.org/article/ab74eb1d3d144a599d9c7b9087876bab |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OE8EX8dv6cUTwSejZjyRNBDlO8TyFFR9cuLeQNIku7HV1twvef-9M2l1cWcTXNm2amUx-82vC_ABeqBCd18hU20L4nFvnc4e4lOvICTJ8WyZJlslneT7lny7ExQFs5K1GA672UjvSk5ou58e_fl6dYMC_IcaJePsqtrNLh1Svqo5JNUKJa3AdgamhOJ2M2X5amBvaVqM9Z8REkVdaqWGfc_9bdpAqFfTfl4X-fZjyD3Q6uw23xrSSnQ7z4A4chO4u3BiEJq_uwcmHdc8ms6HoUm9fs9OOfbxMo-569mVuMfFms44RK2UVG4_JrNiEynX269V9mJ69__ruPB-lE_KWS9HnEWFYxIhshRyhqjbUvoxITUQZUsUh74SXUgSntLCtwtAMPBY--iI01vL6ARx2iy48AhajiJXyxAQVDzIoWTd1rT0vbSwKHzIoNmYy7VhXnOQt5gb5BVnWJMsasqwZLJvBy-0jP4aiGv9q_JZsv21I9bDThcXymxnDy1jXcEQdj6Pk3AqtvW4bpwuF65F01mXwfOM5g_FDmyK2C4v1ylSyJk7MyzKDh4Mnt11hcsorpMgZNDs-3vmW3Tvd7Huq0a0USX3Jx__R7xO4ScOlo-CleAqH_XIdnmGm07uj9IfgKM3i34Lr-yY |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+Microbiota%3A+An+Important+Player+in+Type+2+Diabetes+Mellitus&rft.jtitle=Frontiers+in+cellular+and+infection+microbiology&rft.au=Zhou%2C+Zheng&rft.au=Sun%2C+Bao&rft.au=Yu%2C+Dongsheng&rft.au=Zhu%2C+Chunsheng&rft.date=2022-02-15&rft.issn=2235-2988&rft.eissn=2235-2988&rft.volume=12&rft.spage=834485&rft_id=info:doi/10.3389%2Ffcimb.2022.834485&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2235-2988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2235-2988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2235-2988&client=summon |