Application of in silico Platform for the Development and Optimization of Fully Bioresorbable Vascular Scaffold Designs

Bioresorbable vascular scaffolds (BVS), made either from polymers or from metals, are promising materials for treating coronary artery disease through the processes of percutaneous transluminal coronary angioplasty. Despite the opinion that bioresorbable polymers are more promising for coronary sten...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in medical technology Vol. 3; p. 724062
Main Authors Milosevic, Miljan, Anic, Milos, Nikolic, Dalibor, Geroski, Vladimir, Milicevic, Bogdan, Kojic, Milos, Filipovic, Nenad
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 14.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bioresorbable vascular scaffolds (BVS), made either from polymers or from metals, are promising materials for treating coronary artery disease through the processes of percutaneous transluminal coronary angioplasty. Despite the opinion that bioresorbable polymers are more promising for coronary stents, their long-term advantages over metallic alloys have not yet been demonstrated. The development of new polymer-based BVS or optimization of the existing ones requires engineers to perform many very expensive mechanical tests to identify optimal structural geometry and material characteristics. mechanical testing opens the possibility for a fast and low-cost process of analysis of all the mechanical characteristics and also provides the possibility to compare two or more competing designs. In this study, we used a recently introduced material model of poly-l-lactic acid (PLLA) fully bioresorbable vascular scaffold and recently empowered numerical InSilc platform to perform mechanicals tests of two different stent designs with different material and geometrical characteristics. The result of inflation, radial compression, three-point bending, and two-plate crush tests shows that numerical procedures with true experimental constitutive relationships could provide reliable conclusions and a significant contribution to the optimization and design of bioresorbable polymer-based stents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Frederic Heim, Université de Haute-Alsace, France; Sónia Isabel Silva Pinto, University of Porto, Portugal
Edited by: Giancarlo Pennati, Politecnico di Milano, Italy
This article was submitted to Cardiovascular Medtech, a section of the journal Frontiers in Medical Technology
ISSN:2673-3129
2673-3129
DOI:10.3389/fmedt.2021.724062