A Temporal Graph Model to Predict Chemical Transformations in Complex Dissolved Organic Matter

Dissolved organic matter (DOM) is a complex mixture of thousands of natural molecules that undergo constant transformation in the environment, such as sunlight induced photochemical reactions. Despite molecular level resolution from ultrahigh resolution mass spectrometry (UHRMS), trends of mass peak...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 57; no. 46; pp. 18116 - 18126
Main Authors Plamper, Philipp, Lechtenfeld, Oliver J., Herzsprung, Peter, Groß, Anika
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dissolved organic matter (DOM) is a complex mixture of thousands of natural molecules that undergo constant transformation in the environment, such as sunlight induced photochemical reactions. Despite molecular level resolution from ultrahigh resolution mass spectrometry (UHRMS), trends of mass peak intensities are currently the only way to follow photochemically induced molecular changes in DOM. Many real-world relationships and temporal processes can be intuitively modeled using graph data structures (networks). Graphs enhance the potential and value of AI applications by adding context and interconnections allowing the uncovering of hidden or unknown relationships in data sets. We use a temporal graph model and link prediction to identify transformations of DOM molecules in a photo-oxidation experiment. Our link prediction algorithm simultaneously considers educt removal and product formation for molecules linked by predefined transformation units (oxidation, decarboxylation, etc.). The transformations are further weighted by the extent of intensity change and clustered on the graph structure to identify groups of similar reactivity. The temporal graph is capable of identifying relevant molecules subject to similar reactions and enabling to study their time course. Our approach overcomes previous data evaluation limitations for mechanistic studies of DOM and leverages the potential of temporal graphs to study DOM reactivity by UHRMS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.3c00351