Sliding Mode-Based Control of a UAV Quadrotor for Suppressing the Cable-Suspended Payload Vibration

This paper addresses the problem of damping vibrations of a cable-suspended payload during positioning of the quadrotor. A nonlinear model is derived for the coupled quadrotor-pendulum system in the X-Z plane using Euler–Lagrange formulation. Sliding mode control (SMC) is used for horizontal positio...

Full description

Saved in:
Bibliographic Details
Published inJournal of control science and engineering Vol. 2020; no. 2020; pp. 1 - 12
Main Authors Kusznir, Tom, Smoczek, Jaroslaw
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper addresses the problem of damping vibrations of a cable-suspended payload during positioning of the quadrotor. A nonlinear model is derived for the coupled quadrotor-pendulum system in the X-Z plane using Euler–Lagrange formulation. Sliding mode control (SMC) is used for horizontal positioning and payload vibration damping, while a feedback linearizing controller is used for both altitude and attitude control. The SMC surface parameters are determined by placing the eigenvalues of the linearized system at a desired position. The simulation results show the effectiveness of the proposed control method in minimizing payload vibration by comparing it with a partial feedback linearizing controller and a ZVDD input shaper.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-5249
1687-5257
DOI:10.1155/2020/5058039