Acute stretch promotes endothelial cell proliferation in wounded healing mouse skin
We have developed a novel in vivo model utilizing acute stretch to investigate endothelial cell proliferation as a marker of vascular growth in healing mouse skin. This study is a follow-up to ones revealing immediate stretch improves blood flow, decreases total tissue necrosis, and induces tissue i...
Saved in:
Published in | Archives of Dermatological Research Vol. 300; no. 9; pp. 495 - 504 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.10.2008
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We have developed a novel in vivo model utilizing acute stretch to investigate endothelial cell proliferation as a marker of vascular growth in healing mouse skin. This study is a follow-up to ones revealing immediate stretch improves blood flow, decreases total tissue necrosis, and induces tissue insulin transcription. Dorsal distally based flaps of skin were stretched for 3 min using linear (skin hook) plus hemispherical load cycling (inflated subcutaneous silicone catheter). Unstretched, wounded skin along the back and sternum served as postoperative controls. Laser Doppler flowmetry demonstrated a threefold increase in flap perfusion at postoperative day 7. A stretch-induced sixfold increase in endothelial cell mitogenesis accompanied enhancements in blood flow and extracorporal wound healing over the sternum. Western blots revealed up-regulation/activation of insulin and mitogenic signaling intermediates in stretched skin. Activated insulin and insulin growth factor receptors (pIR/pIGFR), protein kinase B (Akt, pAkt), vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (flk-1) were among the identified stretch-responsive intermediates. These results indicate the benefits of acute stretch are mediated through enhanced vascularity as evidenced by endothelial cell mitogenesis and up-regulation/activation of insulin and key angiogenic effectors in dorsal distally based skin flaps. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0340-3696 1432-069X |
DOI: | 10.1007/s00403-008-0836-3 |