Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment
Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. Nutlin-3a and superparamagnetic nanoparticles were encap...
Saved in:
Published in | Nanomedicine (London, England) Vol. 8; no. 3; pp. 727 - 752 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Future Medicine Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency.
Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells.
Nut-Mag-SLNs showed good colloidal stability, the ability to cross an
blood-brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug.
Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme. |
---|---|
AbstractList | Aim: Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. Materials & methods: Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells. Results: Nut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood–brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug. Conclusion: Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme. Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells. Nut-Mag-SLNs showed good colloidal stability, the ability to cross an blood-brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug. Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme. Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells. Nut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood-brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug. Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme. Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency.AIMGlioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency.Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells.MATERIALS & METHODSNutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells.Nut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood-brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug.RESULTSNut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood-brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug.Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme.CONCLUSIONNut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme. |
Author | Ciofani, Gianni Battaglini, Matteo Giorgi, Mario Moscato, Stefania de Julián Fernández, César Scarpellini, Alice Sinibaldi, Edoardo Grillone, Agostina Mattii, Letizia |
AuthorAffiliation | 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy 1Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy 7Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy 5Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy 6Veterinary Clinics Department, Università di Pisa, Via Livornese 1, 56010 San Piero a Grado, Italy 4Institute of Materials for Electronics & Magnetism, Consiglio Nazionale delle Ricerche-CNR, Parco area delle Scienza 37/A, 43124 Parma, Italy 3Department of Clinical & Experimental Medicine, Università di Pisa, Via Savi 10, 56126 Pisa, Italy 8Department of Mechanical & Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy |
AuthorAffiliation_xml | – name: 4Institute of Materials for Electronics & Magnetism, Consiglio Nazionale delle Ricerche-CNR, Parco area delle Scienza 37/A, 43124 Parma, Italy – name: 8Department of Mechanical & Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy – name: 5Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy – name: 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy – name: 1Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy – name: 6Veterinary Clinics Department, Università di Pisa, Via Livornese 1, 56010 San Piero a Grado, Italy – name: 7Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy – name: 3Department of Clinical & Experimental Medicine, Università di Pisa, Via Savi 10, 56126 Pisa, Italy – name: 6 Veterinary Clinics Department, Università di Pisa, Via Livornese 1, 56010 San Piero a Grado, Italy – name: 1 Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy – name: 7 Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy – name: 3 Department of Clinical & Experimental Medicine, Università di Pisa, Via Savi 10, 56126 Pisa, Italy – name: 4 Institute of Materials for Electronics & Magnetism, Consiglio Nazionale delle Ricerche-CNR, Parco area delle Scienza 37/A, 43124 Parma, Italy – name: 8 Department of Mechanical & Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy – name: 2 The Biorobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy – name: 5 Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy |
Author_xml | – sequence: 1 givenname: Agostina surname: Grillone fullname: Grillone, Agostina – sequence: 2 givenname: Matteo surname: Battaglini fullname: Battaglini, Matteo – sequence: 3 givenname: Stefania surname: Moscato fullname: Moscato, Stefania – sequence: 4 givenname: Letizia surname: Mattii fullname: Mattii, Letizia – sequence: 5 givenname: César surname: de Julián Fernández fullname: de Julián Fernández, César – sequence: 6 givenname: Alice surname: Scarpellini fullname: Scarpellini, Alice – sequence: 7 givenname: Mario surname: Giorgi fullname: Giorgi, Mario – sequence: 8 givenname: Edoardo surname: Sinibaldi fullname: Sinibaldi, Edoardo – sequence: 9 givenname: Gianni surname: Ciofani fullname: Ciofani, Gianni |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30574827$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUmLFTEUhYO02IMu3UqBGzfRDFUZNoI0TtDopl2HVOrmmSaVPJOU4L83z9c22tCbjN89OTfnHJ2knACh55S8ZozKNymtmBGqMBm5eITOqBwVFlrwkz9rjiel9Ck6r_WGkEkxSp6gU06mjjF5hq6_bC2GhGO2CyzDancJWnBDzTEsQwz7Piab8t6WfhyhDj6Xodmyg9b5XQx5jra2vNqhFbBthdSeosfexgrPbucL9O3D--vLT_jq68fPl--usBvF1PA8S6K5B7KMkgrvLfd2FN4uXnnh6aTd7HgnZkGBC00dYZYw7YAxLkfC-AV6e9Tdb_MKi-tPFxvNvoTVll8m22D-v0nhu9nln0ZIQrUmXeDVrUDJPzaozayhOojRJshbNayb0IpypTr68h56k7eSenum5yDGUTKpO_XiX0d3Vv5-eAfwEXAl11rA3yGUHISk6YGaQ6DmEGjn-T3ehWZbyIeGQnywSh-r_Na2AtUFSA7Mcdd9BRcSPFD7G0aYuZY |
CitedBy_id | crossref_primary_10_1016_j_colsurfb_2021_111946 crossref_primary_10_2217_nnm_2019_0414 crossref_primary_10_2174_0118722105244482231017102857 crossref_primary_10_1038_s41573_024_01033_z crossref_primary_10_1002_bit_28100 crossref_primary_10_3390_life14010155 crossref_primary_10_2174_1871520622666220901101204 crossref_primary_10_1016_j_ijpharm_2020_119351 crossref_primary_10_1016_j_bbadis_2024_167653 crossref_primary_10_1063_5_0155037 crossref_primary_10_3390_cancers13020195 crossref_primary_10_1016_j_arr_2023_101921 crossref_primary_10_3390_molecules26061616 crossref_primary_10_1016_j_sciaf_2025_e02582 crossref_primary_10_1016_j_biopha_2024_117465 crossref_primary_10_1016_j_jtice_2020_09_012 crossref_primary_10_1080_08982104_2023_2204372 crossref_primary_10_3390_brainsci11030358 crossref_primary_10_3390_pharmaceutics15030751 crossref_primary_10_1016_j_biopha_2023_116113 crossref_primary_10_3390_pharmaceutics15030831 crossref_primary_10_3390_nano10112104 crossref_primary_10_1186_s13661_024_01862_2 crossref_primary_10_2217_nnm_2020_0436 crossref_primary_10_1080_00914037_2024_2344603 crossref_primary_10_5005_hos_10101_51103 crossref_primary_10_1080_1061186X_2021_1892121 crossref_primary_10_1016_j_ijpharm_2022_122575 crossref_primary_10_3390_ijms23169361 crossref_primary_10_1002_anbr_202000054 crossref_primary_10_1016_j_addr_2021_01_012 crossref_primary_10_1016_j_ceramint_2020_07_117 crossref_primary_10_4155_tde_2021_0086 crossref_primary_10_3390_bioengineering9100484 crossref_primary_10_3390_biomedicines10071598 crossref_primary_10_3390_app13031883 crossref_primary_10_1016_j_jtice_2024_105637 crossref_primary_10_2174_1381612829666230703113141 crossref_primary_10_1002_adhm_201900612 crossref_primary_10_1016_j_matdes_2020_108742 crossref_primary_10_1016_j_trac_2023_117319 crossref_primary_10_1007_s13346_024_01587_w crossref_primary_10_3390_jnt6010007 crossref_primary_10_1155_2019_1805841 crossref_primary_10_1016_j_actbio_2020_12_024 crossref_primary_10_1208_s12249_023_02555_2 crossref_primary_10_3390_pharmaceutics14030506 crossref_primary_10_1016_j_matdes_2020_108610 crossref_primary_10_1007_s13204_023_02803_8 crossref_primary_10_5005_hoe_10101_51103 crossref_primary_10_1002_adhm_201901589 crossref_primary_10_1016_j_jddst_2024_105838 crossref_primary_10_2147_IJN_S452134 crossref_primary_10_1016_j_crphar_2021_100067 crossref_primary_10_1007_s00005_021_00609_6 crossref_primary_10_1021_acsami_0c05556 crossref_primary_10_1124_jpet_123_001689 |
Cites_doi | 10.1186/1756-8722-6-23 10.3171/2016.1.JNS152513 10.1038/s41598-017-07416-0 10.1001/archopht.124.9.1269 10.1002/adfm.201402289 10.20517/2394-4722.2015.95 10.1016/j.jconrel.2017.06.028 10.1002/jps.24002 10.1158/1078-0432.CCR-08-2955 10.1371/journal.pone.0018588 10.1016/j.biopha.2015.12.014 10.1016/S0928-0987(00)00152-4 10.1602/neurorx.2.1.3 10.1021/jm501092z 10.1016/j.brainres.2006.10.083 10.1586/14737175.7.4.363 10.1016/j.snb.2015.07.110 10.3389/fphys.2012.00166 10.1016/S0006-8993(03)03443-7 10.1038/jid.2012.10 10.1016/j.jconrel.2007.12.018 10.1016/j.ijpharm.2012.03.047 10.1126/science.1092472 10.1016/j.ejps.2018.07.044 10.1016/j.jconrel.2016.02.026 10.2217/nnm.10.102 10.1074/jbc.M110.124990 10.3349/ymj.2010.51.5.633 10.1016/j.bcp.2010.04.035 10.1038/nrn1824 10.1016/j.celrep.2016.01.059 10.1016/j.biomaterials.2016.11.012 10.1016/j.canep.2016.04.007 10.1016/j.nano.2009.12.006 10.1088/1361-6528/aac447 10.1002/chem.201703660 10.1002/bit.26045 10.1098/rstb.2009.0313 10.1080/02652040600788080 10.1093/carcin/21.3.485 10.1158/1078-0432.CCR-13-0015 10.1016/j.jconrel.2017.12.015 10.1063/1.2185850 10.1002/adhm.201700306 10.1016/j.canlet.2013.03.018 10.1016/j.jconrel.2017.08.033 10.1016/j.biomaterials.2012.07.046 10.4161/cc.5.12.2863 10.1038/jcbfm.2010.162 10.1166/jnn.2008.15348 10.1016/j.biomaterials.2008.07.011 10.1016/j.jneumeth.2014.05.013 10.2217/nnm.11.19 10.1016/j.yexcr.2012.07.017 10.2217/nnm.12.86 10.1038/s41598-018-19522-8 10.1016/j.ajpath.2015.02.023 10.1039/c2lc41208j 10.1021/am5092165 10.1007/s40263-016-0405-9 10.1002/smll.201701921 10.1039/C2LC41033H 10.1016/j.jconrel.2018.05.008 10.3389/fneng.2013.00007 10.1371/journal.pone.0032920 10.1093/abbs/gms053 10.1038/leu.2008.11 10.1016/j.drudis.2016.05.020 10.1016/j.ijpharm.2015.05.029 10.1016/j.ijpharm.2016.03.005 10.1016/j.bbcan.2012.05.004 10.1158/0008-5472.CAN-06-2712 10.1093/neuonc/nov164 10.1016/j.jconrel.2016.05.044 10.1016/j.ajpath.2012.06.030 10.1016/j.jconrel.2014.12.030 10.1002/ijc.1306 |
ContentType | Journal Article |
Copyright | 2018 Gianni Ciofani Copyright Future Medicine Ltd Mar 2019 |
Copyright_xml | – notice: 2018 Gianni Ciofani – notice: Copyright Future Medicine Ltd Mar 2019 |
DBID | FUMOA AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU EHMNL FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.2217/nnm-2018-0436 |
DatabaseName | Future Medicine (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One UK & Ireland Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library UK & Ireland Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FUMOA name: Future Medicine (Open Access) url: https://www.futuremedicine.com/action/showPublications?pubType=journal sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-6963 |
EndPage | 752 |
ExternalDocumentID | PMC6701990 30574827 10_2217_nnm_2018_0436 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 709613 |
GroupedDBID | - 0R 123 29M 34G 39C 3V. 53G 70G 7X7 88E 8AO 8FI 8FJ ABUWG ACGFS AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS BBAFP BENPR BPHCQ BVXVI CS3 DU5 EBS EHMNL EJD F5P FUMOA FYUFA H13 HZ IAO IEA IHR INH INR M1P MV1 NTCAX O9- P2P PQQKQ PRINS PSQYO RFM --- 0R~ 4.4 AAWFG AAYXX ABJNI ACGFO ACWKX ADBBV AFFYO ALIPV CCPQU CITATION FD6 HMCUK HZ~ ITC M4Z OVD PHGZM PHGZT PROAC RPM TDBHL TEORI TFL TFMDE TMEDX UKHRP ~ZZ ABNDM CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7XB 8FK K9. PKEHL PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c465t-bb7093fe0d4716ffa3fa46fadf8f6f159cbc3093b61e3691c02a029ce22374023 |
IEDL.DBID | FUMOA |
ISSN | 1743-5889 1748-6963 |
IngestDate | Thu Aug 21 14:06:42 EDT 2025 Thu Jul 10 18:29:09 EDT 2025 Fri Jul 25 09:12:03 EDT 2025 Mon Jul 21 05:35:37 EDT 2025 Tue Jul 01 04:06:07 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Tue Jan 05 21:41:42 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | glioblastoma multiforme dynamic fluidic models blood–brain barrier magnetic targeting nutlin-3a solid lipid nanoparticles |
Language | English |
License | This work is licensed under the Attribution-NonCommercial-NoDerivatives 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-bb7093fe0d4716ffa3fa46fadf8f6f159cbc3093b61e3691c02a029ce22374023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.2217/nnm-2018-0436 |
PMID | 30574827 |
PQID | 2216447279 |
PQPubID | 54598 |
PageCount | 26 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6701990 proquest_miscellaneous_2159981388 proquest_journals_2216447279 pubmed_primary_30574827 crossref_primary_10_2217_nnm_2018_0436 crossref_citationtrail_10_2217_nnm_2018_0436 futurescience_futuremedicine_10_2217_nnm_2018_0436 |
ProviderPackageCode | RFM FUMOA NTCAX 70G CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Nanomedicine (London, England) |
PublicationTitleAlternate | Nanomedicine (Lond) |
PublicationYear | 2019 |
Publisher | Future Medicine Ltd |
Publisher_xml | – name: Future Medicine Ltd |
References | e_1_3_5_29_1 e_1_3_5_27_1 e_1_3_5_25_1 Halatsch ME (e_1_3_5_74_1) 2006; 26 e_1_3_5_23_1 e_1_3_5_44_1 e_1_3_5_67_1 e_1_3_5_46_1 e_1_3_5_69_1 e_1_3_5_48_1 e_1_3_5_82_1 e_1_3_5_3_1 e_1_3_5_61_1 e_1_3_5_80_1 e_1_3_5_40_1 e_1_3_5_63_1 e_1_3_5_86_1 e_1_3_5_42_1 e_1_3_5_65_1 e_1_3_5_84_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_5_1 e_1_3_5_7_1 e_1_3_5_18_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_37_1 e_1_3_5_14_1 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_56_1 e_1_3_5_77_1 e_1_3_5_50_1 e_1_3_5_71_1 e_1_3_5_73_1 e_1_3_5_54_1 e_1_3_5_75_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_28_1 e_1_3_5_26_1 e_1_3_5_24_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_66_1 Moll UM (e_1_3_5_79_1) 2003; 1 e_1_3_5_68_1 e_1_3_5_49_1 Ramirez YP (e_1_3_5_15_1) 2013; 6 e_1_3_5_83_1 e_1_3_5_60_1 e_1_3_5_81_1 e_1_3_5_41_1 e_1_3_5_62_1 e_1_3_5_43_1 Booth RH (e_1_3_5_47_1) 2012 e_1_3_5_64_1 e_1_3_5_85_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_6_1 e_1_3_5_17_1 e_1_3_5_38_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_55_1 e_1_3_5_78_1 e_1_3_5_57_1 e_1_3_5_59_1 Berselli LC (e_1_3_5_58_1) 2013; 219 e_1_3_5_19_1 Adriani G (e_1_3_5_51_1) 2017; 12 e_1_3_5_70_1 e_1_3_5_72_1 Adriani G (e_1_3_5_52_1) 2015 e_1_3_5_53_1 e_1_3_5_76_1 e_1_3_5_32_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_34_1 doi: 10.1186/1756-8722-6-23 – ident: e_1_3_5_75_1 doi: 10.3171/2016.1.JNS152513 – ident: e_1_3_5_46_1 doi: 10.1038/s41598-017-07416-0 – ident: e_1_3_5_76_1 doi: 10.1001/archopht.124.9.1269 – ident: e_1_3_5_83_1 doi: 10.1002/adfm.201402289 – ident: e_1_3_5_19_1 doi: 10.20517/2394-4722.2015.95 – ident: e_1_3_5_24_1 doi: 10.1016/j.jconrel.2017.06.028 – ident: e_1_3_5_43_1 doi: 10.1002/jps.24002 – ident: e_1_3_5_73_1 doi: 10.1158/1078-0432.CCR-08-2955 – ident: e_1_3_5_29_1 doi: 10.1371/journal.pone.0018588 – ident: e_1_3_5_18_1 doi: 10.1016/j.biopha.2015.12.014 – ident: e_1_3_5_63_1 doi: 10.1016/S0928-0987(00)00152-4 – ident: e_1_3_5_84_1 doi: 10.1602/neurorx.2.1.3 – ident: e_1_3_5_35_1 doi: 10.1021/jm501092z – ident: e_1_3_5_65_1 doi: 10.1016/j.brainres.2006.10.083 – volume: 1 start-page: 1001 issue: 14 year: 2003 ident: e_1_3_5_79_1 article-title: The MDM2-p53 interaction publication-title: Mol. Cancer Res – ident: e_1_3_5_22_1 doi: 10.1586/14737175.7.4.363 – ident: e_1_3_5_54_1 doi: 10.1016/j.snb.2015.07.110 – ident: e_1_3_5_64_1 doi: 10.3389/fphys.2012.00166 – ident: e_1_3_5_62_1 doi: 10.1016/S0006-8993(03)03443-7 – ident: e_1_3_5_32_1 doi: 10.1038/jid.2012.10 – ident: e_1_3_5_44_1 doi: 10.1016/j.jconrel.2007.12.018 – ident: e_1_3_5_23_1 doi: 10.1016/j.ijpharm.2012.03.047 – ident: e_1_3_5_38_1 doi: 10.1126/science.1092472 – ident: e_1_3_5_81_1 doi: 10.1016/j.ejps.2018.07.044 – ident: e_1_3_5_5_1 doi: 10.1016/j.jconrel.2016.02.026 – ident: e_1_3_5_40_1 doi: 10.2217/nnm.10.102 – ident: e_1_3_5_78_1 doi: 10.1074/jbc.M110.124990 – ident: e_1_3_5_6_1 doi: 10.3349/ymj.2010.51.5.633 – ident: e_1_3_5_10_1 doi: 10.1016/j.bcp.2010.04.035 – ident: e_1_3_5_13_1 doi: 10.1038/nrn1824 – ident: e_1_3_5_33_1 doi: 10.1016/j.celrep.2016.01.059 – ident: e_1_3_5_55_1 doi: 10.1016/j.biomaterials.2016.11.012 – start-page: 491 year: 2012 ident: e_1_3_5_47_1 article-title: A parallel array microfluidic blood–brain barrier model for high-throughput quantitation of shear stress effects publication-title: 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences – ident: e_1_3_5_3_1 doi: 10.1016/j.canep.2016.04.007 – ident: e_1_3_5_71_1 doi: 10.1016/j.nano.2009.12.006 – ident: e_1_3_5_72_1 doi: 10.1088/1361-6528/aac447 – ident: e_1_3_5_28_1 doi: 10.1002/chem.201703660 – ident: e_1_3_5_48_1 doi: 10.1002/bit.26045 – volume: 26 start-page: 4191 issue: 6 year: 2006 ident: e_1_3_5_74_1 article-title: Uniform MDM2 overexpression in a panel of glioblastoma multiforme cell lines with divergent EGFR and p53 expression status publication-title: Anticancer Res. – ident: e_1_3_5_4_1 doi: 10.1098/rstb.2009.0313 – ident: e_1_3_5_26_1 doi: 10.1080/02652040600788080 – ident: e_1_3_5_61_1 doi: 10.1093/carcin/21.3.485 – ident: e_1_3_5_67_1 doi: 10.1158/1078-0432.CCR-13-0015 – ident: e_1_3_5_12_1 doi: 10.1016/j.jconrel.2017.12.015 – volume: 12 start-page: 169 issue: 3 year: 2017 ident: e_1_3_5_51_1 article-title: A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier publication-title: Lab. Chip – ident: e_1_3_5_60_1 doi: 10.1063/1.2185850 – ident: e_1_3_5_85_1 doi: 10.1002/adhm.201700306 – ident: e_1_3_5_31_1 doi: 10.1016/j.canlet.2013.03.018 – ident: e_1_3_5_45_1 doi: 10.1016/j.jconrel.2017.08.033 – ident: e_1_3_5_25_1 doi: 10.1016/j.biomaterials.2012.07.046 – ident: e_1_3_5_80_1 doi: 10.4161/cc.5.12.2863 – ident: e_1_3_5_49_1 doi: 10.1038/jcbfm.2010.162 – ident: e_1_3_5_59_1 doi: 10.1166/jnn.2008.15348 – ident: e_1_3_5_82_1 doi: 10.1016/j.biomaterials.2008.07.011 – ident: e_1_3_5_50_1 doi: 10.1016/j.jneumeth.2014.05.013 – ident: e_1_3_5_68_1 doi: 10.2217/nnm.11.19 – ident: e_1_3_5_7_1 doi: 10.1016/j.yexcr.2012.07.017 – ident: e_1_3_5_27_1 doi: 10.2217/nnm.12.86 – volume: 219 start-page: 5717 issue: 10 year: 2013 ident: e_1_3_5_58_1 article-title: Exact solution to the inverse Womersley problem for pulsatile flows in cylindrical vessels, with application to magnetic particle targeting publication-title: Appl. Math. Comput. – ident: e_1_3_5_41_1 doi: 10.1038/s41598-018-19522-8 – ident: e_1_3_5_36_1 doi: 10.1016/j.ajpath.2015.02.023 – ident: e_1_3_5_53_1 doi: 10.1039/c2lc41208j – ident: e_1_3_5_11_1 doi: 10.1021/am5092165 – ident: e_1_3_5_70_1 doi: 10.1007/s40263-016-0405-9 – start-page: 338 year: 2015 ident: e_1_3_5_52_1 article-title: Modeling the blood–brain barrier in a 3D triple co-culture microfluidic system publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. EMBS – ident: e_1_3_5_20_1 doi: 10.1002/smll.201701921 – ident: e_1_3_5_56_1 doi: 10.1039/C2LC41033H – ident: e_1_3_5_16_1 doi: 10.1016/j.jconrel.2018.05.008 – ident: e_1_3_5_57_1 doi: 10.3389/fneng.2013.00007 – ident: e_1_3_5_39_1 doi: 10.1371/journal.pone.0032920 – ident: e_1_3_5_30_1 doi: 10.1093/abbs/gms053 – ident: e_1_3_5_37_1 doi: 10.1038/leu.2008.11 – ident: e_1_3_5_14_1 doi: 10.1016/j.drudis.2016.05.020 – volume: 6 start-page: 1475 issue: 12 year: 2013 ident: e_1_3_5_15_1 article-title: Glioblastoma multiforme therapy and mechanisms of resistance publication-title: Pharm. – ident: e_1_3_5_66_1 doi: 10.1016/j.ijpharm.2015.05.029 – ident: e_1_3_5_86_1 doi: 10.1016/j.ijpharm.2016.03.005 – ident: e_1_3_5_9_1 doi: 10.1016/j.bbcan.2012.05.004 – ident: e_1_3_5_77_1 doi: 10.1158/0008-5472.CAN-06-2712 – ident: e_1_3_5_17_1 doi: 10.1093/neuonc/nov164 – ident: e_1_3_5_69_1 doi: 10.1016/j.jconrel.2016.05.044 – ident: e_1_3_5_8_1 doi: 10.1016/j.ajpath.2012.06.030 – ident: e_1_3_5_21_1 doi: 10.1016/j.jconrel.2014.12.030 – ident: e_1_3_5_42_1 doi: 10.1002/ijc.1306 |
SSID | ssj0058210 |
Score | 2.4731963 |
Snippet | Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a... Aim: Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a... |
SourceID | pubmedcentral proquest pubmed crossref futurescience |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 727 |
SubjectTerms | Antineoplastic Agents - chemistry Antineoplastic Agents - therapeutic use Apoptosis Biological Transport Blood-Brain Barrier Brain cancer Cancer therapies Cell cycle Cell Line, Tumor Cell Survival - drug effects Chemotherapy Cytotoxicity Drug Carriers - chemistry Drug efficacy Drug Liberation dynamic fluidic models Glioblastoma - drug therapy glioblastoma multiforme Humans Imidazoles - chemistry Imidazoles - therapeutic use Kinases Kinetics Lipids Lipids - chemistry Magnetic fields magnetic targeting Magnetite Nanoparticles - chemistry Nanoparticles nutlin-3a Particle Size Physicochemical properties Piperazines - chemistry Piperazines - therapeutic use Proteins Senescence solid lipid nanoparticles Surface Properties Tumors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7a9NJSQvpK3aTFhdJTRWxZtqVTKKEhFJpTAnszeqYLu_K28f7_zqy1TrY0vRiMxsaeGWm-kUafAD6VPiBQdQUrrQxMOFEzTbSVkgurm9JjCKSNwj8um4tr8X1Wz9KE220qq9yOiZuB2vWW5shPOEdgLzDaqtPVL0anRtHqajpC4zE8IeoyKulqZ1PCRXtA04bIitVSqpFjE9_UnsS4RAcpJSMK9p2Y9Hwk80gB6F_A8-_6yXsB6fwA9hOSzL-Opn8Bj3x8Cc_u8Qu-gqvL9YAwki167bzLl_om0p7FHP1t7vLFfIXXqCPmzak8LkcIm4_F4Sh_s5j3BtH10C91PlWkv4br829XZxcsHaPArGjqgRnTFqoKvnAYiJoQdBW0aIJ2QYYmIJyxxtJ6qCHTNKq0BdcFV9YjcmgxvazewF7so38LuZDOiKrymqCgNtpIW3MVMOXwgjteZvBlq8jOJo5xOupi0WGuQXrvUO8d6b0jvWfweRJfjeQaDwnyHat04922_OChh463putSx7zt7twog49TM3YpWifR0fdrlEGdKFlWUmZwOFp6-jwcHltiTs2g3fGBSYDoundb4vznhra7IeZ7Vbz7_2cdwVP8AzWWuR3D3vB77d8j7hnMh41z_wHDHQQu priority: 102 providerName: ProQuest |
Title | Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment |
URI | http://dx.doi.org/10.2217/nnm-2018-0436 https://www.ncbi.nlm.nih.gov/pubmed/30574827 https://www.proquest.com/docview/2216447279 https://www.proquest.com/docview/2159981388 https://pubmed.ncbi.nlm.nih.gov/PMC6701990 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x2wtohXgTWKogIU5YJI6T2EdArSpEK4S2Um-R49hLpdZZsen_ZwanYQPshUse8iRKZmzPN_LMZ4A3qXUIVJuEpUY6JhqRM020lZILo4vUogukQuHlqlisxedNvvlNkjReweeIl997v0dTppIRWfoJTHhZ0giczNdLip7CpEvlnn3tY8ZyKVWg0_z7BSP3cxZ4O3pf8y-M-Weq5A3fM38A93vQGH8IVn4Id6x_BPduUAk-hovVoUPEyHatbmwT7_Wlp_LEGLvWtol32ys8eu0xRO4z4WJEq3HIA0f5y922rRFId-1ex0Py-RNYz2cXnxas3zGBGVHkHavrMlGZs0mDPqdwTmdOi8LpxklXOEQupja09FmTFQqVmoTrhCtjESSUGElmT-HUt94-h1jIphZZZjWhPl3rWpqcK4fRhRW84WkE746KrExPJ067WuwqDCtI7xXqvSK9V6T3CN4O4leBR-M2QT6yShXujpkGtz10fjRd1Y_BaxJDsIf4TEXwemjG0UNLItrb9oAyqBMl00zKCJ4FSw-fhzNhSSSpEZSjPjAIEDP3uMVvv_9i6C6I5F4lL_7nX17CXbxWIc_tHE67Hwf7CoFPV0_hpNyUU5h8nK2-fsPzbLFcfZn2Q-En0OMGUg |
linkProvider | Future Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wMghHgTKBAk4ITVxHGyzgEhHq22tF0htJV6C44f7Uq7zpZmhfhT_EZmNg-6iHLrJVKUieSMxzPfxDOfAV7G1iFQNRGLtXRMGJEyRbSVkgutsthiCKRG4cNxNjoSn4_T4w341fXCUFll5xNXjtpUmv6Rb3OOwF5gtM3fLc4YnRpFu6vdERqNWezbnz8wZTt_u_cJ5_cV57s7k48j1p4qwLTI0pqV5RCzeGcjg345c04lTonMKeOkyxxGd11q2h4saaRZHuuIq4jn2mIgHYoV0QG6_E2RYCozgM0PO-MvXzvfT12nbQtmwlIp84bVE8c-3PZ-jiYZS0ak72tR8GZDH9KGvH9B3b8rNi-EwN3bcKvFruH7xtjuwIb1d-HGBUbDezAZL2sErmxWKWNNOFcnnrokQ7TwqQln0wVevfKYqbcFeSGC5rApR0f5k9m0KhHP19VchX0N_H04uhIVP4CBr7x9BKGQphRJYhWBT1WqUuqU5w6THCu44XEAbzpFFrplNafDNWYFZjek9wL1XpDeC9J7AK978UVD53GZIF-blaK56woeLntpq5u6onUF58Ufww3gRf8YFzHtzChvqyXKoE5yGSdSBvCwmel-eOiQh8TVGsBwzQZ6ASIIX3_ip6crovCMuPbz6PH_h_Ucro0mhwfFwd54_wlcx6_JmyK7LRjU35f2KaKuunzWmnoI3656df0GuCRCfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBVFE_KypVSOoTy6XbDbJ5kFErEdr9fChhXuLm_2oB3ebs80h_mv-dc5cPuyJ9a0vgZAJbGZnZ36TnfktwIvYOgSqJmKxlo4JI1KmiLZScqFVFlsMgdQo_HmSHZyIj9N0ugW_-l4YKqvsfeLaUZta0z_yEecI7AVG22LkurKIL_vjt8vvjE6Qop3W_jiN1kSO7M8fmL6dvzncx7l-yfn4w_H7A9adMMC0yNKGVVWOGb2zkUEfnTmnEqdE5pRx0mUOI72uNG0VVjTqrIh1xFXEC20xqOZiTXqA7v9anqQxrbF8OiR71H_aNWMmLJWyaPk98SvykfcLNM5YMqJ_34iHt1oikS74_Qv0_l27eSEYju_A7Q7Fhu9as7sLW9bfg5sXuA3vw_Fk1SCEZfNaGWvChTr11C8Zoq3PTDifLfHqlcecvSvNCxE-h21hOsqfzmd1hci-qRcqHKrhH8DJlSj4IWz72ttHEAppKpEkVhEMVZWqpE554TDdsYIbHgfwuldkqTt-czpmY15inkN6L1HvJem9JL0H8GoQX7bEHpcJ8o1ZKdu7vvThspf2-qkrO6dwXv4x4QCeD49xOdMejfK2XqEM6qSQcSJlADvtTA_DQ9ecE2trAPmGDQwCRBW--cTPvq0pwzNi3S-i3f8P6xlcxzVVfjqcHD2GG_gxRVtttwfbzdnKPkH41VRP13YewterXli_AQb7RU8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nutlin-loaded+magnetic+solid+lipid+nanoparticles+for+targeted+glioblastoma+treatment&rft.jtitle=Nanomedicine+%28London%2C+England%29&rft.au=Grillone%2C+Agostina&rft.au=Battaglini%2C+Matteo&rft.au=Moscato%2C+Stefania&rft.au=Mattii%2C+Letizia&rft.date=2019-03-01&rft.pub=Future+Medicine+Ltd&rft.issn=1743-5889&rft.eissn=1748-6963&rft.volume=8&rft.issue=3&rft.spage=727&rft.epage=752&rft_id=info:doi/10.2217%2Fnnm-2018-0436&rft.externalDocID=10_2217_nnm_2018_0436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-5889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-5889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-5889&client=summon |