Visible and near-infrared spectroscopic investigation of near-Earth objects at ESO: first results

Near-Earth objects (NEOs) represent one of the most intriguing populations of Solar System bodies. These objects appear heterogeneous in all aspects of their physical properties, like shapes, sizes, spin rates, compositions etc. Moreover, as these objects represent also a real threat to the Earth, a...

Full description

Saved in:
Bibliographic Details
Published inIcarus (New York, N.Y. 1962) Vol. 169; no. 2; pp. 373 - 384
Main Authors Lazzarin, M., Marchi, S., Barucci, M.A., Di Martino, M., Barbieri, C.
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.06.2004
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Near-Earth objects (NEOs) represent one of the most intriguing populations of Solar System bodies. These objects appear heterogeneous in all aspects of their physical properties, like shapes, sizes, spin rates, compositions etc. Moreover, as these objects represent also a real threat to the Earth, a good knowledge of their properties and composition is the necessary first step to evaluate mitigation techniques and to understand their origin and evolution. In the last few years we have started a long-term spectroscopic investigation in the visible and near-infrared (NIR) region of near-Earth objects. The observations have been performed with the 3.5 m NTT of the European Southern Observatory of La Silla (Chile). The data presented here are a set of 24 spectra, 14 of which are both visible and NIR. We discuss the taxonomic classification of the observed NEOs, resulting in 13 S-type objects, 1 Q-type, 2 K-types, 3 C-types, 5 Xe-types (two of these, (3103) Eger and (4660) Nereus, are already known as E-types). Moreover, we discuss their links with meteorites and the possible influences of space weathering.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0019-1035
1090-2643
DOI:10.1016/j.icarus.2003.12.023