An Enhanced Comprehensive Learning Particle Swarm Optimizer with the Elite-Based Dominance Scheme
In recent years, swarm-based stochastic optimizers have achieved remarkable results in tackling real-life problems in engineering and data science. When it comes to the particle swarm optimization (PSO), the comprehensive learning PSO (CLPSO) is a well-established evolutionary algorithm that introdu...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 24 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc Hindawi Limited Hindawi-Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In recent years, swarm-based stochastic optimizers have achieved remarkable results in tackling real-life problems in engineering and data science. When it comes to the particle swarm optimization (PSO), the comprehensive learning PSO (CLPSO) is a well-established evolutionary algorithm that introduces a comprehensive learning strategy (CLS), which effectively boosts the efficacy of the PSO. However, when the single modal function is processed, the convergence speed of the algorithm is too slow to converge quickly to the optimum during optimization. In this paper, the elite-based dominance scheme of another well-established method, grey wolf optimizer (GWO), is introduced into the CLPSO, and the grey wolf local enhanced comprehensive learning PSO algorithm (GCLPSO) is proposed. Thanks to the exploitative trends of the GWO, the algorithm improves the local search capacity of the CLPSO. The new variant is compared with 15 representative and advanced algorithms on IEEE CEC2017 benchmarks. Experimental outcomes have shown that the improved algorithm outperforms other comparison competitors when coping with four different kinds of functions. Moreover, the algorithm is favorably utilized in feature selection and three constrained engineering construction problems. Simulations have shown that the GCLPSO is capable of effectively dealing with constrained problems and solves the problems encountered in actual production. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2020/4968063 |