N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks
Docosahexaenoic acid (DHA) is a major structural component of the nervous system, and depletion may lead to losses in neural function. Our objective was to demonstrate a deficit in spatial task performance in rats with low brain DHA due to a low n-3 fatty acid intake using a first-generational artif...
Saved in:
Published in | Pediatric research Vol. 58; no. 4; pp. 741 - 748 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
01.10.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Docosahexaenoic acid (DHA) is a major structural component of the nervous system, and depletion may lead to losses in neural function. Our objective was to demonstrate a deficit in spatial task performance in rats with low brain DHA due to a low n-3 fatty acid intake using a first-generational artificial rearing technique. Newborn rat pups were separated on d 2 and assigned to two artificial rearing groups or a dam-reared control group. Pups were hand fed artificial milk via custom-designed nursing bottles containing either 0.02% (n-3 Def) or 3.1% (n-3 Adq) of total fatty acids as LNA. At d 21, rats were weaned to either n-3 Def or n-3 Adq pelleted diets and several behavioral tasks were evaluated at 9 wk of age. Brain DHA was lower (58% and 61%, p < 0.001) in n-3 Def in comparison to n-3 Adq and dam-reared rats, respectively. At adulthood, the n-3 fatty acid-deficient rats had a significantly greater moving time than the dam-reared group (p < 0.05), but there were no differences among the three groups in the elevated plus maze test. The n-3 fatty acid deficient rats exhibited a longer escape latency (p < 0.05) and poorer memory retention in the Morris water maze compared with n-3 fatty acid adequate and dam-reared rats. We concluded that artificial rearing can be used to produce n-3 fatty acid deficiency in the first generation. This deficiency was associated with significantly reduced spatial learning. Adequate brain DHA levels are required for optimal spatial learning. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-3998 1530-0447 |
DOI: | 10.1203/01.pdr.0000180547.46725.cc |