In hot water: effects of temperature-dependent interiors on the radii of water-rich super-Earths
Observational advancements are leading to increasingly precise measurements of super-Earth masses and radii. Such measurements are used in internal structure models to constrain interior compositions of super-Earths. It is now critically important to quantify the effect of various model assumptions...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 458; no. 2; pp. 1330 - 1344 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
11.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Observational advancements are leading to increasingly precise measurements of super-Earth masses and radii. Such measurements are used in internal structure models to constrain interior compositions of super-Earths. It is now critically important to quantify the effect of various model assumptions on the predicted radii. In particular, models often neglect thermal effects, a choice justified by noting that the thermal expansion of a solid Earth-like planet is small. However, the thermal effects for water-rich interiors may be significant. We have systematically explored the extent to which thermal effects can influence the radii of water-rich super-Earths over a wide range of masses, surface temperatures, surface pressures and water mass fractions. We developed temperature-dependent internal structure models of water-rich super-Earths that include a comprehensive temperature-dependent water equation of state. We found that thermal effects induce significant changes in their radii. For example, for super-Earths with 10 per cent water by mass, the radius increases by up to 0.5 R⊕ when the surface temperature is increased from 300 to 1000 K, assuming a surface pressure of 100 bar and an adiabatic temperature gradient in the water layer. The increase is even larger at lower surface pressures and/or higher surface temperatures, while changing the water fraction makes only a marginal difference. These effects are comparable to current super-Earth radial measurement errors, which can be better than 0.1 R⊕. It is therefore important to ensure that the thermal behaviour of water is taken into account when interpreting super-Earth radii using internal structure models. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stw321 |