Electroencephalogram Source Imaging and Brain Network Based Natural Grasps Decoding

Studying the decoding process of complex grasping movement is of great significance to the field of motor rehabilitation. This study aims to decode five natural reach-and-grasp types using sources of movement-related cortical potential (MRCP) and investigate their difference in cortical signal chara...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 15; p. 797990
Main Authors Xu, Baoguo, Deng, Leying, Zhang, Dalin, Xue, Muhui, Li, Huijun, Zeng, Hong, Song, Aiguo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 30.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Studying the decoding process of complex grasping movement is of great significance to the field of motor rehabilitation. This study aims to decode five natural reach-and-grasp types using sources of movement-related cortical potential (MRCP) and investigate their difference in cortical signal characteristics and network structures. Electroencephalogram signals were gathered from 40 channels of eight healthy subjects. In an audio cue-based experiment, subjects were instructed to keep no-movement condition or perform five natural reach-and-grasp movements: palmar, pinch, push, twist and plug. We projected MRCP into source space and used average source amplitudes in 24 regions of interest as classification features. Besides, functional connectivity was calculated using phase locking value. Six-class classification results showed that a similar grand average peak performance of 49.35% can be achieved using source features, with only two-thirds of the number of channel features. Besides, source imaging maps and brain networks presented different patterns between each condition. Grasping pattern analysis indicated that the modules in the execution stage focus more on internal communication than in the planning stage. The former stage was related to the parietal lobe, whereas the latter was associated with the frontal lobe. This study demonstrates the superiority and effectiveness of source imaging technology and reveals the spread mechanism and network structure of five natural reach-and-grasp movements. We believe that our work will contribute to the understanding of the generation mechanism of grasping movement and promote a natural and intuitive control of brain–computer interface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Jing Xue, Wuxi People’s Hospital Affiliated to Nanjing Medical University, China; Tongguang Ni, Changzhou University, China
Edited by: Yizhang Jiang, Jiangnan University, China
ISSN:1662-453X
1662-4548
1662-453X
DOI:10.3389/fnins.2021.797990