Short-Term Traffic Flow Forecasting Method Based on LSSVM Model Optimized by GA-PSO Hybrid Algorithm

Short-term traffic flow forecasting is one of the key issues in the field of dynamic traffic control and management. Because of the uncertainty and nonlinearity, short-term traffic flow forecasting remains a challenging task. In order to improve the accuracy of short-term traffic flow forecasting, a...

Full description

Saved in:
Bibliographic Details
Published inDiscrete dynamics in nature and society Vol. 2018; no. 2018; pp. 1 - 10
Main Authors Pan, Fuquan, Chen, Xiufeng, Qu, Dayi, Bing, Qichun, Wei, Jinli
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Short-term traffic flow forecasting is one of the key issues in the field of dynamic traffic control and management. Because of the uncertainty and nonlinearity, short-term traffic flow forecasting remains a challenging task. In order to improve the accuracy of short-term traffic flow forecasting, a short-term traffic flow forecasting method based on LSSVM model optimized by GA-PSO hybrid algorithm is put forward. Firstly, the LSSVM model is constructed with combined kernel function. Then the GA-PSO hybrid optimization algorithm is designed to optimize the kernel function parameters efficiently and effectively. Finally, case validation is carried out using inductive loop data collected from the north-south viaduct in Shanghai. The experimental results demonstrate that the proposed GA-PSO-LSSVM model is superior to comparative method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1026-0226
1607-887X
DOI:10.1155/2018/3093596